beta-Expansions in algebraic function fields over finite fields

The present paper deals with an algebraic function field analogue of @b-expansions of real numbers. It completely characterizes the sets with eventually periodic and finite expansions. These characterizations are unknown in the real case.

[1]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[2]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[3]  SUR LE BÊTA-DÉVELOPPEMENT DE 1 DANS LE CORPS DES SÉRIES FORMELLES , 2006 .

[4]  J. Neukirch Algebraic Number Theory , 1999 .

[5]  Shigeki Akiyama,et al.  Generalized radix representations and dynamical systems. I , 2005 .

[6]  François Blanchard beta-Expansions and Symbolic Dynamics , 1989, Theor. Comput. Sci..

[7]  Michael Rosen,et al.  Number Theory in Function Fields , 2002 .

[8]  Shigeki Akiyama,et al.  Cubic Pisot units with finite beta expansions , 2004 .

[9]  P. Bateman,et al.  The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series , 1962 .

[10]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[11]  Boris Solomyak,et al.  Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.

[12]  S. Akiyama Self affine tiling and Pisot numeration system , 1999 .

[13]  K. Schmidt,et al.  On Periodic Expansions of Pisot Numbers and Salem Numbers , 1980 .

[14]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[15]  J. Thuswaldner,et al.  Digit systems in polynomial rings over finite fields , 2003 .

[16]  Shigeki Akiyama,et al.  Pisot numbers and greedy algorithm , 1998 .

[17]  Shigeki Akiyama,et al.  Generalized radix representations and dynamical systems II , 2006 .

[18]  W. Parry On theβ-expansions of real numbers , 1960 .

[19]  Nick Lord,et al.  Pisot and Salem Numbers , 1991 .