Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface

Transcription-coupled DNA repair targets DNA lesions that block progression of elongating RNA polymerases. In bacteria, the transcription-repair coupling factor (TRCF; also known as Mfd) SF2 ATPase recognizes RNA polymerase stalled at a site of DNA damage, removes the enzyme from the DNA, and recruits the Uvr(A)BC nucleotide excision repair machinery via UvrA binding. Previous studies of TRCF revealed a molecular architecture incompatible with UvrA binding, leaving its recruitment mechanism unclear. Here, we examine the UvrA recognition determinants of TRCF using X-ray crystallography of a core TRCF–UvrA complex and probe the conformational flexibility of TRCF in the absence and presence of nucleotides using small-angle X-ray scattering. We demonstrate that the C-terminal domain of TRCF is inhibitory for UvrA binding, but not RNA polymerase release, and show that nucleotide binding induces concerted multidomain motions. Our studies suggest that autoinhibition of UvrA binding in TRCF may be relieved only upon engaging the DNA damage.

[1]  G. Bowman,et al.  Structural insights into regulation and action of SWI2/SNF2 ATPases. , 2011, Current opinion in structural biology.

[2]  E. Nudler,et al.  Linking RNA Polymerase Backtracking to Genome Instability in E. coli , 2011, Cell.

[3]  V. Nagaraja,et al.  Distinct Properties of Hexameric but Functionally Conserved Mycobacterium tuberculosis Transcription-Repair Coupling Factor , 2011, PloS one.

[4]  S. Darst,et al.  Derepression of bacterial transcription-repair coupling factor is associated with a profound conformational change. , 2011, Journal of molecular biology.

[5]  N. Savery,et al.  Regulation and Rate Enhancement during Transcription-Coupled DNA Repair , 2010, Molecular cell.

[6]  V. Lamour,et al.  Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction , 2010, Nucleic acids research.

[7]  M. O’Donnell,et al.  Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase , 2010, Journal of visualized experiments : JoVE.

[8]  Chih-heng Hsieh Probing the Activation Mechanism of Transcription-Coupled Repair Factor Mfd , 2010 .

[9]  N. Reyes,et al.  Transport mechanism of a bacterial homologue of glutamate transporters , 2009, Nature.

[10]  G. Lee,et al.  The Helicobacter pylori Mfd protein is important for antibiotic resistance and DNA repair. , 2009, Diagnostic microbiology and infectious disease.

[11]  N. Savery,et al.  An N-terminal clamp restrains the motor domains of the bacterial transcription-repair coupling factor Mfd , 2009, Nucleic acids research.

[12]  D. Jeruzalmi,et al.  A Structural Model for the Damage-sensing Complex in Bacterial Nucleotide Excision Repair* , 2009, Journal of Biological Chemistry.

[13]  P. Hanawalt,et al.  Transcription-coupled DNA repair: two decades of progress and surprises , 2008, Nature Reviews Molecular Cell Biology.

[14]  O. Sahin,et al.  Key Role of Mfd in the Development of Fluoroquinolone Resistance in Campylobacter jejuni , 2008, PLoS pathogens.

[15]  D. Jeruzalmi,et al.  Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding. , 2008, Molecular cell.

[16]  Mary E. Hunnewell Probing for Conformational Changes in the Repair Enzyme Mfd Using Mutant Protein Constructs , 2008 .

[17]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[18]  N. Savery,et al.  Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase , 2007, Nucleic acids research.

[19]  N. Savery,et al.  The bacterial transcription repair coupling factor. , 2007, Current opinion in structural biology.

[20]  T. Owen-Hughes,et al.  Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures , 2006, Nucleic Acids Research.

[21]  Jeffrey W. Roberts,et al.  Role of DNA bubble rewinding in enzymatic transcription termination. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  N. Savery,et al.  Structural Basis for Bacterial Transcription-Coupled DNA Repair , 2006, Cell.

[23]  K. Hopfner,et al.  Structural basis for transcription-coupled repair: the N terminus of Mfd resembles UvrB with degenerate ATPase motifs. , 2006, Journal of molecular biology.

[24]  S. Darst,et al.  Crystallization and preliminary structure determination of Escherichia coli Mfd, the transcription-repair coupling factor. , 2005, Acta crystallographica. Section F, Structural biology and crystallization communications.

[25]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[26]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[27]  B. Van Houten,et al.  Interactions between UvrA and UvrB: the role of UvrB's domain 2 in nucleotide excision repair , 2004, The EMBO journal.

[28]  Jeffrey W. Roberts,et al.  Mfd, the bacterial transcription repair coupling factor: translocation, repair and termination. , 2004, Current opinion in microbiology.

[29]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[30]  Alan A. Dombkowski,et al.  Disulfide by DesignTM: a computational method for the rational design of disulfide bonds in proteins , 2003, Bioinform..

[31]  M. Gottesman,et al.  Role of E.coli transcription-repair coupling factor Mfd in Nun-mediated transcription termination. , 2003, Journal of molecular biology.

[32]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[33]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[34]  S. Burley,et al.  X‐ray structure of Saccharomyces cerevisiae homologous mitochondrial matrix factor 1 (Hmf1) , 2002, Proteins.

[35]  Jeffrey W. Roberts,et al.  E. coli Transcription Repair Coupling Factor (Mfd Protein) Rescues Arrested Complexes by Promoting Forward Translocation , 2002, Cell.

[36]  D I Svergun,et al.  Determination of domain structure of proteins from X-ray solution scattering. , 2001, Biophysical journal.

[37]  S Birmanns,et al.  Using situs for flexible and rigid-body fitting of multiresolution single-molecule data. , 2001, Journal of structural biology.

[38]  M. Machius,et al.  The nucleotide excision repair protein UvrB, a helicase-like enzyme with a catch. , 2000, Mutation research.

[39]  R. Landick,et al.  Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  D I Svergun,et al.  Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. , 1999, Biophysical journal.

[41]  S. Fisher,et al.  Transcription–repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons , 1998, Molecular microbiology.

[42]  S. Nakai,et al.  The Mfd protein of Bacillus subtilis 168 is involved in both transcription-coupled DNA repair and DNA recombination. , 1996, Journal of molecular biology.

[43]  A. Sancar,et al.  Transcription-repair coupling and mutation frequency decline , 1993, Journal of bacteriology.

[44]  A. Sancar,et al.  Molecular mechanism of transcription-repair coupling. , 1993, Science.

[45]  J. Falke,et al.  Thermal motions of surface alpha-helices in the D-galactose chemosensory receptor. Detection by disulfide trapping. , 1992, Journal of molecular biology.

[46]  M. Chamberlin,et al.  Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes. , 1992, Journal of molecular biology.

[47]  A. Sancar,et al.  Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Sancar,et al.  Transcription preferentially inhibits nucleotide excision repair of the template DNA strand in vitro. , 1990, The Journal of biological chemistry.

[49]  A. Sancar,et al.  Structure and function of the (A)BC excinuclease of Escherichia coli. , 1990, Mutation research.

[50]  A. Sancar,et al.  大腸菌(A)BCエクシヌクレアーゼの構造と機能 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1990 .

[51]  A. Sancar,et al.  Amplification and purification of UvrA, UvrB, and UvrC proteins of Escherichia coli. , 1985, The Journal of biological chemistry.

[52]  D. R. Graham,et al.  Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline . cuprous complex. Inhibition of Escherichia coli DNA polymerase I. , 1979, The Journal of biological chemistry.