A nonlinear parabolic equation backward in time: Regularization with new error estimates

Abstract Consider a nonlinear backward parabolic problem in the form u t + A u ( t ) = f ( t , u ( t ) ) , u ( T ) = g , where A is a positive self-adjoint unbounded operator. Based on the fundamental solution to the parabolic equation, we propose to solve this problem by the Fourier truncated method, which generates a well-posed integral equation. Then the well-posedness of the proposed regularizing problem and convergence property of the regularizing solution to the exact one are proven. Our regularizing scheme can be considered a new regularization, with the advantage of a relatively small amount of computation compared with the quasi-reversibility or quasi-boundary value regularizations. Error estimates for this method are provided together with a selection rule for the regularization parameter. These errors show that our method works effectively.

[1]  Richard E. Ewing,et al.  The Approximation of Certain Parabolic Equations Backward in Time by Sobolev Equations , 1975 .

[2]  Herbert Amann,et al.  Time-delayed Perona-Malik type problems , 2007 .

[3]  Nguyen Thanh Long,et al.  Approximation of a parabolic non-linear evolution equation backwards in time , 1994 .

[4]  D. D. Trong,et al.  A nonlinearly backward heat problem: uniqueness, regularization and error estimate , 2006 .

[5]  Pham Hoang Quan,et al.  A Nonlinear Case of the 1-D Backward Heat Problem: Regularization and Error Estimate , 2007 .

[6]  Alfred S. Carasso,et al.  Logarithmic convexity and the “slow evolution” constraint in ill-posed initial value problems , 1999 .

[7]  D. D. Trong,et al.  Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation , 2009 .

[8]  Houde,et al.  STABILIZED NUMERICAL APPROXIMATIONS OF THE BACKWARD PROBLEM OF A PARABOLIC EQUATION , 2001 .

[9]  Karen A. Ames,et al.  A Kernel-based Method for the Approximate Solution of Backward Parabolic Problems , 1997 .

[10]  Robert Lattès,et al.  Méthode de quasi-réversibilbilité et applications , 1967 .

[11]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[12]  Seth F. Oppenheimer,et al.  Quasireversibility Methods for Non-Well-Posed Problems , 1994 .

[13]  Per Christian Hansen,et al.  Regularization methods for large-scale problems , 1993 .

[14]  D. D. Trong,et al.  STABILIZED QUASI-REVERSIBILITY METHOD FOR A CLASS OF NONLINEAR ILL-POSED PROBLEMS , 2008 .

[15]  Structural Stability for Ill-Posed Problems in Banach Space , 2005 .

[16]  B. L. Buzbee,et al.  On the Numerical Computation of Parabolic Problems for Preceding Times , 1973 .

[17]  D. D. Trong,et al.  A NONHOMOGENEOUS BACKWARD HEAT PROBLEM: REGULARIZATION AND ERROR ESTIMATES , 2008 .

[18]  Yongzhong Huang Modified quasi-reversibility method for final value problems in Banach spaces , 2008 .

[19]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[20]  Ralph E. Showalter,et al.  Cauchy Problem for Hyper-Parabolic Partial Differential Equations , 1985 .

[21]  H. Gajewski,et al.  Zur regularisierung einer Klasse nichtkorrekter probleme bei evolutionsgleichungen , 1972 .

[22]  Alfred S. Carasso,et al.  Overcoming Ho¨lder continuity in ill-posed continuation problems , 1994 .

[23]  Huy Tuan Nguyen,et al.  REGULARIZATION AND ERROR ESTIMATES FOR NONHOMOGENEOUS BACKWARD HEAT PROBLEMS , 2006 .

[24]  Nguyen Manh Hung,et al.  Unique solvability of initial boundary-value problems for hyperbolic systems in cylinders whose base is a cusp domain , 2008 .

[25]  M. Denche,et al.  A modified quasi-boundary value method for ill-posed problems , 2005 .

[26]  Hichem Sahli,et al.  A non-local boundary value problem method for parabolic equations backward in time , 2008 .

[27]  James F. Epperson,et al.  A comparison of regularizations for an ill-posed problem , 1998, Math. Comput..

[28]  Hua Su,et al.  POSITIVE SOLUTIONS OF FOUR-POINT BOUNDARY-VALUE PROBLEMS FOR FOUR-ORDER p-LAPLACIAN DYNAMIC EQUATIONS ON TIME SCALES , 2006 .