A Survey on Recommender Systems for News Data

The advent of online newspapers broadened the diversity of available news’ sources. As the volume of news grows, so does the need for tools which act as filters, delivering only information that can be considered relevant to the reader. Recommender systems can be used in the organization of news, easing reading and navigation through newspapers. Employing the users’ history on items consumption, user profiles or other source of knowledge, these systems can personalize the user experience, reducing the information overload we currently face. This chapter presents these recommender filters, explaining their particularities and applications in the news’ domain.

[1]  Michael J. Pazzani,et al.  User Modeling for Adaptive News Access , 2000, User Modeling and User-Adapted Interaction.

[2]  Françoise Fessant,et al.  Designing Specific Weighted Similarity Measures to Improve Collaborative Filtering Systems , 2008, ICDM.

[3]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[4]  John Riedl,et al.  Is seeing believing?: how recommender system interfaces affect users' opinions , 2003, CHI '03.

[5]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[6]  Françoise Fessant,et al.  State-of-the-Art Recommender Systems , 2009 .

[7]  Dan Frankowski,et al.  Collaborative Filtering Recommender Systems , 2007, The Adaptive Web.

[8]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[9]  Abhinandan Das,et al.  Google news personalization: scalable online collaborative filtering , 2007, WWW '07.

[10]  Andreas Töscher The BigChaos Solution to the Netflix Prize 2008 , 2008 .

[11]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[12]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[13]  Thomas W. Malone,et al.  Intelligent Information Sharing Systems , 1986 .

[14]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[15]  Nikos Manouselis,et al.  Overview of Design Options for Neighborhood-Based Collaborative Filtering Systems , 2008 .

[16]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[17]  Prem Melville and Raymond J. Mooney and Ramadass Nagarajan Content-Boosted Collaborative Filtering , 2001 .

[18]  Michael J. Pazzani,et al.  A personal news agent that talks, learns and explains , 1999, AGENTS '99.

[19]  Antal van den Bosch,et al.  Comparing and evaluating information retrieval algorithms for news recommendation , 2007, RecSys '07.

[20]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[21]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[22]  Robin Burke,et al.  Knowledge-based recommender systems , 2000 .

[23]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[24]  Sung-Bong Yang,et al.  Using Attributes to Improve Prediction Quality in Collaborative Filtering , 2004, EC-Web.

[25]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[26]  Max Chevalier,et al.  Collaborative and Social Information Retrieval and Access: Techniques for Improved User Modeling , 2008 .

[27]  Petra Perner,et al.  Advances in Data Mining , 2002, Lecture Notes in Computer Science.

[28]  Barry Smyth,et al.  PTV: Intelligent Personalised TV Guides , 2000, AAAI/IAAI.

[29]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[30]  Andrew McCallum,et al.  A comparison of event models for naive bayes text classification , 1998, AAAI 1998.

[31]  Ahmad M. Ahmad Wasfi Collecting user access patterns for building user profiles and collaborative filtering , 1998, IUI '99.

[32]  Josep Lluís de la Rosa i Esteva,et al.  Opinion-Based Filtering through Trust , 2002, CIA.

[33]  Josep Lluís de la Rosa i Esteva,et al.  A Taxonomy of Recommender Agents on the Internet , 2003, Artificial Intelligence Review.

[34]  Robert Legenstein,et al.  Improved neighborhood-based algorithms for large-scale recommender systems , 2008, NETFLIX '08.

[35]  John Riedl,et al.  An Empirical Analysis of Design Choices in Neighborhood-Based Collaborative Filtering Algorithms , 2002, Information Retrieval.

[36]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[37]  Johanna D. Moore,et al.  Evaluating information presentation strategies for spoken recommendations , 2007, RecSys '07.

[38]  Stephen E. Robertson,et al.  Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.

[39]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[40]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[41]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[42]  Alfred Kobsa,et al.  The Adaptive Web, Methods and Strategies of Web Personalization , 2007, The Adaptive Web.