Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes

The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease remains challenging. Here, we present an integrative approach to resolve the taxonomic and functional attributes of gastrointestinal microbiota at the metagenomic, metatranscriptomic and metaproteomic levels. We apply our methods to samples from four families with multiple cases of type 1 diabetes mellitus (T1DM). Analysis of intra- and inter-individual variation demonstrates that family membership has a pronounced effect on the structural and functional composition of the gastrointestinal microbiome. In the context of T1DM, consistent taxonomic differences were absent across families, but certain human exocrine pancreatic proteins were found at lower levels. The associated microbial functional signatures were linked to metabolic traits in distinct taxa. The methodologies and results provide a foundation for future large-scale integrated multi-omic analyses of the gastrointestinal microbiome in the context of host–microbe interactions in human health and disease.

[1]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[2]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[3]  Brian H. McArdle,et al.  FITTING MULTIVARIATE MODELS TO COMMUNITY DATA: A COMMENT ON DISTANCE‐BASED REDUNDANCY ANALYSIS , 2001 .

[4]  Doug Brutlag,et al.  Multiple Sequence Alignment Multiple Sequence Alignment , 2003 .

[5]  P. Bingley,et al.  The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes , 2004, The Lancet.

[6]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[7]  S. Eddy,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[8]  S A Bingham,et al.  The CAFE computer program for nutritional analysis of the EPIC-Norfolk food frequency questionnaire and identification of extreme nutrient values. , 2005, Journal of human nutrition and dietetics : the official journal of the British Dietetic Association.

[9]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[10]  Beatriz de la Iglesia,et al.  Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms , 2006, J. Math. Model. Algorithms.

[11]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[12]  T. McNeilly,et al.  The expression of intelectin in sheep goblet cells and upregulation by interleukin-4. , 2007, Veterinary immunology and immunopathology.

[13]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[14]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[15]  D. Legrand,et al.  Lactoferrin structure and functions. , 2008, Advances in experimental medicine and biology.

[16]  Tobias Müller,et al.  Identifying functional modules in protein–protein interaction networks: an integrated exact approach , 2008, ISMB.

[17]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[18]  Adam Godzik,et al.  Shotgun metaproteomics of the human distal gut microbiota , 2008, The ISME Journal.

[19]  P. May,et al.  An integrative approach towards completing genome-scale metabolic networks. , 2009, Molecular bioSystems.

[20]  D. Hunter,et al.  mixtools: An R Package for Analyzing Mixture Models , 2009 .

[21]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[22]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[23]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[24]  H. Randeva,et al.  Omentin: a novel link between inflammation, diabesity, and cardiovascular disease. , 2010, Trends in cardiovascular medicine.

[25]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[26]  Robert B. Hartlage,et al.  This PDF file includes: Materials and Methods , 2009 .

[27]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[28]  Bernard Henrissat,et al.  Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins , 2010, Proceedings of the National Academy of Sciences.

[29]  Tobias Müller,et al.  Bioinformatics Applications Note Systems Biology Bionet: an R-package for the Functional Analysis of Biological Networks , 2022 .

[30]  J. Walter,et al.  The human gut microbiome: ecology and recent evolutionary changes. , 2011, Annual review of microbiology.

[31]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[32]  Olli Simell,et al.  Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes , 2011, PloS one.

[33]  Jennifer C. Drew,et al.  Toward defining the autoimmune microbiome for type 1 diabetes , 2011, The ISME Journal.

[34]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[35]  Miguel Pignatelli,et al.  Metatranscriptomic Approach to Analyze the Functional Human Gut Microbiota , 2011, PloS one.

[36]  Peer Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[37]  Brandi L. Cantarel,et al.  Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease , 2012, PloS one.

[38]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[39]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[40]  Peer Bork,et al.  MOCAT: A Metagenomics Assembly and Gene Prediction Toolkit , 2012, PloS one.

[41]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[42]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[43]  Rafael Bargiela,et al.  Gut microbiota disturbance during antibiotic therapy: a multi-omic approach , 2012, Gut.

[44]  Peter D. Karp,et al.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2007, Nucleic Acids Res..

[45]  Ruben E. Valas,et al.  Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage , 2011, The ISME Journal.

[46]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[47]  Alexandra J. Scott,et al.  Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2 , 2012, Bioinform..

[48]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[49]  P. Bingley,et al.  Trends in childhood type 1 diabetes incidence in Europe during 1989–2008: evidence of non-uniformity over time in rates of increase , 2012, Diabetologia.

[50]  C. Orme,et al.  betapart: an R package for the study of beta diversity , 2012 .

[51]  A. Chervonsky,et al.  Does the gut microbiota have a role in type 1 diabetes? Early evidence from humans and animal models of the disease , 2012, Diabetologia.

[52]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[53]  Weijun Luo,et al.  Pathview: an R/Bioconductor package for pathway-based data integration and visualization , 2013, Bioinform..

[54]  Se Jin Song,et al.  Cohabiting family members share microbiota with one another and with their dogs , 2013, eLife.

[55]  Alison S. Waller,et al.  Genomic variation landscape of the human gut microbiome , 2012, Nature.

[56]  Johannes Griss,et al.  The Proteomics Identifications (PRIDE) database and associated tools: status in 2013 , 2012, Nucleic Acids Res..

[57]  Erin Beck,et al.  TIGRFAMs and Genome Properties in 2013 , 2012, Nucleic Acids Res..

[58]  Paul Wilmes,et al.  Sequential isolation of metabolites, RNA, DNA, and proteins from the same unique sample. , 2013, Methods in enzymology.

[59]  C. Schalkwijk,et al.  Current therapeutic interventions in the glycation pathway: evidence from clinical studies , 2013, Diabetes, obesity & metabolism.

[60]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[61]  F. Tinahones,et al.  Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study , 2013, BMC Medicine.

[62]  Alexandros Stamatakis,et al.  Metagenomic species profiling using universal phylogenetic marker genes , 2013, Nature Methods.

[63]  F. Abe,et al.  A lactoferrin-receptor, intelectin 1, affects uptake, sub-cellular localization and release of immunochemically detectable lactoferrin by intestinal epithelial Caco-2 cells. , 2013, Journal of biochemistry.

[64]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[65]  P. Hugenholtz,et al.  Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes , 2013, Nature Biotechnology.

[66]  M. Ferrer,et al.  Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. , 2013, Environmental microbiology.

[67]  J. Clemente,et al.  The Long-Term Stability of the Human Gut Microbiota , 2013 .

[68]  M. V. von Herrath,et al.  Erratum. Increased Immune Cell Infiltration of the Exocrine Pancreas: A Possible Contribution to the Pathogenesis of Type 1 Diabetes. Diabetes 2014;63:3880–3890 , 2014, Diabetes.

[69]  Aedín C. Culhane,et al.  A multivariate approach to the integration of multi-omics datasets , 2014, BMC Bioinformatics.

[70]  M. Atkinson Losing a Grip on the Notion of β-Cell Specificity for Immune Responses in Type 1 Diabetes: Can We Handle the Truth? , 2014, Diabetes.

[71]  Nitin S. Baliga,et al.  Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage , 2014, Nature Communications.

[72]  Pascal Bouvry,et al.  Management of an academic HPC cluster: The UL experience , 2014, 2014 International Conference on High Performance Computing & Simulation (HPCS).

[73]  L. Stronati,et al.  Lactoferrin prevents invasion and inflammatory response following E. coli strain LF82 infection in experimental model of Crohn's disease. , 2014, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.

[74]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[75]  Austin G. Davis-Richardson,et al.  Compromised Gut Microbiota Networks in Children With Anti-Islet Cell Autoimmunity , 2014, Diabetes.

[76]  P. Lescuyer,et al.  Method validation for preparing serum and plasma samples from human blood for downstream proteomic, metabolomic, and circulating nucleic acid-based applications. , 2014, Biopreservation and biobanking.

[77]  Beiwen Zheng,et al.  Alterations of the human gut microbiome in liver cirrhosis , 2014, Nature.

[78]  G. McVean,et al.  Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications , 2014, Nature Genetics.

[79]  Angela C. Poole,et al.  Human Genetics Shape the Gut Microbiome , 2014, Cell.

[80]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[81]  Willem M. de Vos,et al.  Aberrant gut microbiota composition at the onset of type 1 diabetes in young children , 2014, Diabetologia.

[82]  A. Chao,et al.  An improved nonparametric lower bound of species richness via a modified good–turing frequency formula , 2014, Biometrics.

[83]  Paul Wilmes,et al.  Alignment-free Visualization of Metagenomic Data by Nonlinear Dimension Reduction , 2014, Scientific Reports.

[84]  C. Huttenhower,et al.  Relating the metatranscriptome and metagenome of the human gut , 2014, Proceedings of the National Academy of Sciences.

[85]  Chien-Chi Lo,et al.  Improved Assemblies Using a Source-Agnostic Pipeline for MetaGenomic Assembly by Merging (MeGAMerge) of Contigs , 2014, Scientific Reports.

[86]  Paolo Di Tommaso,et al.  T-Coffee: Tree-based consistency objective function for alignment evaluation. , 2014, Methods in molecular biology.

[87]  David James Russell,et al.  Multiple sequence alignment methods , 2006 .

[88]  J. Roach,et al.  Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes , 2014, Nature Genetics.

[89]  Olli Simell,et al.  Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes , 2014, Front. Microbiol..

[90]  J. Petrosino,et al.  The dynamics of a family’s gut microbiota reveal variations on a theme , 2014, Microbiome.

[91]  C. Huttenhower,et al.  Determining microbial products and identifying molecular targets in the human microbiome. , 2014, Cell metabolism.

[92]  J. Banfield,et al.  Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut , 2014, Journal of proteome research.

[93]  Paul Wilmes,et al.  Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks , 2015, npj Biofilms and Microbiomes.

[94]  Katherine H. Huang,et al.  Identifying personal microbiomes using metagenomic codes , 2015, Proceedings of the National Academy of Sciences.

[95]  Robert D. Finn,et al.  HMMER web server: 2015 update , 2015, Nucleic Acids Res..

[96]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[97]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[98]  Tommi Vatanen,et al.  The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. , 2015, Cell host & microbe.

[99]  Elhanan Borenstein,et al.  Where Next for Microbiome Research? , 2015, PLoS biology.

[100]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[101]  Tobias Kollmann,et al.  Early infancy microbial and metabolic alterations affect risk of childhood asthma , 2015, Science Translational Medicine.

[102]  Mark P. Waldrop,et al.  Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes , 2015, Nature.

[103]  M. Hessner,et al.  Innate inflammation in type 1 diabetes. , 2016, Translational research : the journal of laboratory and clinical medicine.

[104]  T. Urich,et al.  Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure , 2016, Nature Microbiology.

[105]  Katsuhisa Inoue,et al.  Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter. , 2017, The Journal of Biological Chemistry.