Oil retention and migration in the Barnett, Posidonia, and Niobrara shales

.....................................................................................................................................V Zusammenfassung ...................................................................................................................VII Table of

[1]  D. Baker,et al.  Environmental control of carbon isotope variations in Pennsylvania black-shale sequences, Midcontinent, U.S.A. , 1988 .

[2]  M. Curtis,et al.  Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging , 2012 .

[3]  János Urai,et al.  BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales , 2015 .

[4]  J. Larsen,et al.  Changes in the Macromolecular Structure of a Type I Kerogen during Maturation , 1997 .

[5]  B. Horsfield,et al.  Microscale Sealed Vessel Pyrolysis , 2015 .

[6]  A. N. Fuex The use of stable carbon isotopes in hydrocarbon exploration , 1977 .

[7]  Deniz Ertas,et al.  Petroleum Expulsion Part 1. Theory of Kerogen Swelling in Multicomponent Solvents , 2006 .

[8]  R. Littke,et al.  Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities , 1988 .

[9]  R. Philp,et al.  Laboratory biomarker fractionations and implications for migration studies , 1987 .

[10]  B. Tissot,et al.  Role of mineral matrix in kerogen pyrolysis; influence on petroleum generation and migration , 1980 .

[11]  János Urai,et al.  BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany , 2012 .

[12]  P. R. Reed,et al.  Thermal-Analysis Technique for Source-Rock Evaluation: Quantitative Estimate of Organic Richness and Effects of Lithologic Variation: GEOLOGIC NOTES , 1976 .

[13]  P. Ungerer,et al.  Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation , 1987 .

[14]  Stephen C. Ruppel,et al.  Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas , 2007 .

[15]  J. Hunt THE SIGNIFICANCE OF CARBON ISOTOPE VARIATIONS IN MARINE SEDIMENTS , 1970 .

[16]  J. Moldowan,et al.  Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils , 1978 .

[17]  M. L. Gorbaty,et al.  Predicting oil and gas compositional yields via chemical structure–chemical yield modeling (CS-CYM): Part 1 – Concepts and implementation , 2007 .

[18]  M. Kruge Diagenesis of Miocene Biogenic Sediments in Lost Hills Oil Field, San Joaquin Basin, California , 1983 .

[19]  P. V. Smith,et al.  The Chemical Relationships Between Crude Oils and Their Source Rocks: Topical Papers , 1958 .

[20]  M. Curtis,et al.  Investigation of the Relationship Between Organic Porosity and Thermal Maturity in The Marcellus Shale , 2011 .

[21]  A. Gooday The biology of deep-sea foraminifera; a review of some advances and their applications in paleoceanography , 1994 .

[22]  J. Oudin,et al.  A biological marker study of coals, shales and oils from the Mahakam Delta, Kalimantan, Indonesia , 1984 .

[23]  M. Radke,et al.  Efficiency of petroleum expulsion from shale source rocks , 1986, Nature.

[24]  M. Curtis,et al.  Transmission and Scanning Electron Microscopy Investigation of Pore Connectivity of Gas Shales on the Nanoscale , 2011 .

[25]  David F. Martineau History of the Newark East field and the Barnett Shale as a gas reservoir , 2007 .

[26]  D. Rice Occurrence of Indigenous Biogenic Gas in Organic-Rich, Immature Chalks of Late Cretaceous Age, Eastern Denver Basin , 1984 .

[27]  K. Thompson Gas-condensate migration and oil fractionation in deltaic systems , 1988 .

[28]  O. Stasová,et al.  Geochemistry of Selected Oils and Rocks from the Central Portion of the West Siberian Basin, Russia , 1993 .

[29]  Bernhard M. Krooss,et al.  Geological controls on the methane storage capacity in organic-rich shales , 2014 .

[30]  U. Ritter Fractionation of petroleum during expulsion from kerogen , 2003 .

[31]  D. Leythaeuser,et al.  A Novel Approach for Recognition and Quantification of Hydrocarbon Migration Effects in Shale-Sandstone Sequences , 1984 .

[32]  J. Moldowan,et al.  Paleoreconstruction by Biological Markers , 1981 .

[33]  K. Thomas,et al.  High-pressure methane adsorption and characterization of pores in Posidonia shales and isolated kerogens. , 2014 .

[34]  T. Ging,et al.  Solubility of crude oil in methane as a function of pressure and temperature , 1983 .

[35]  B. Katz Limitations of ‘Rock-Eval’ pyrolysis for typing organic matter , 1983 .

[36]  B. Luneau,et al.  Hydrocarbon Source Rock Potential of the Upper Cretaceous Niobrara Formation, Western interior Seaway of the Rocky Mountain Region , 2001 .

[37]  R. Ishiwatari,et al.  Generation of unsaturated and aromatic hydrocarbons by thermal alteration of young kerogen , 1979 .

[38]  M. Thompson,et al.  Integrated paleoenvironmental analysis of the Niobrara Formation: Cretaceous Western Interior Seaway, northern Colorado , 2014 .

[39]  B. Horsfield,et al.  Thermal Maturation of Gas Shale Systems , 2014 .

[40]  Deniz Ertas,et al.  Petroleum expulsion. Part 3. A model of chemically driven fractionation during expulsion of petroleum from kerogen , 2006 .

[41]  T. M. Quigley,et al.  Calculation of petroleum masses generated and expelled from source rocks , 1986 .

[42]  P. Schettler,et al.  Contributions to Total Storage Capacity in Devonian Shales , 1991 .

[43]  Kenneth E. Peters,et al.  Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis , 1986 .

[44]  M. Teichmüller,et al.  Relationship between rank and composition of aromatic hydrocarbons for coals of different origins , 1984 .

[45]  O. Sherwood,et al.  Hydrocarbon Maturity and Migration Analysis Using Production Gas Stable Isotopic Signatures in the Wattenberg Field, Denver Basin, Colorado, USA , 2013 .

[46]  W. Meinschein,et al.  Sterols as ecological indicators , 1979 .

[47]  P. Garrigues,et al.  Methylated dicyclic and tricyclic aromatic hydrocarbons in crude oils from the Handil field, Indonesia , 1990 .

[48]  P. Albrecht,et al.  The occurence of nuclear methylated steranes in a shale , 1975 .

[49]  Paul C. Hackley,et al.  The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom , 2012 .

[50]  Daniel M. Jarvie,et al.  Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch–Fort Worth Basin, Texas , 2007 .

[51]  Deniz Ertas,et al.  Petroleum Expulsion Part 2. Organic Matter Type and Maturity Effects on Kerogen Swelling by Solvents and Thermodynamic Parameters for Kerogen from Regular Solution Theory , 2006 .

[52]  D. McKirdy,et al.  Relationship between Ratio of Pristane to Phytane, Crude Oil Composition and Geological Environment in Australia , 1973 .

[53]  B. Horsfield,et al.  Effect of maturity on carbazole distributions in petroleum systems: new insights from the Sonda de Campeche, Mexico, and Hils Syncline, Germany , 1998, Naturwissenschaften.

[54]  D. Welte,et al.  Occurrence of thermogenic gas in the immature zone—implications from the Bakken in-source reservoir system , 1994 .

[55]  J. Wilcox,et al.  Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems , 2013 .

[56]  M. Gardner,et al.  Recognition criteria for distinguishing between hemipelagic and pelagic mudrocks in the characterization of deep-water reservoir heterogeneity , 2013 .

[57]  Ryan McLin,et al.  Imaging Texture and Porosity in Mudstones and Shales: Comparison of Secondary and Ion-Milled Backscatter SEM Methods , 2010 .

[58]  E. G. Baker Origin and Migration of Oil , 1959, Science.

[59]  E. Kauffman GEOLOGICAL AND BIOLOGICAL OVERVIEW: WESTERN INTERIOR CRETACEOUS BASIN , 1977 .

[60]  R. Loucks,et al.  Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale , 2009 .

[61]  D. Jennings,et al.  10 Petrographic Characterization of the Eagle Ford Shale, South Texas: Mineralogy, Common Constituents, and Distribution of Nanometer-scale Pore Types , 2013 .

[62]  G. Philippi On the depth, time and mechanism of petroleum generation , 1965 .

[63]  S. Larter,et al.  Phase-controlled molecular fractionations in migrating petroleum charges , 1991, Geological Society, London, Special Publications.

[64]  Kai Mangelsdorf,et al.  Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada) , 2006 .

[65]  K. Bowker Barnett Shale gas production, Fort Worth Basin: Issues and discussion , 2007 .

[66]  M. Radke,et al.  Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. II. Molecular composition of alkylated naphthalenes, phenanthrenes, benzo- and dibenzothiophenes , 1988 .

[67]  Daniel M. Jarvie,et al.  Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi–trillion cubic foot potential , 2005 .

[68]  M. Montacer,et al.  New potential hydrocarbon source-rocks in the Lower Eocene Metlaoui Formation (Central-Northern Tunisia, Northern Africa) , 2007 .

[69]  B. Horsfield,et al.  Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany) , 2012 .

[70]  M. Radke Application of aromatic compounds as maturity indicators in source rocks and crude oils , 1988 .

[71]  P. Sundararaman,et al.  Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey Phosphatic and Siliceous members , 1990 .

[72]  Fred P. Wang,et al.  Pore Networks and Fluid Flow in Gas Shales , 2009 .

[73]  S. Eggen,et al.  Experimental simulation of hydrocarbon expulsion , 1990 .

[74]  B. Horsfield,et al.  Some potential applications of pyrolysis to basin studies , 1983, Journal of the Geological Society.

[75]  Stephen C. Ruppel,et al.  Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores , 2012 .

[76]  R. Marc Bustin,et al.  The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs , 2009 .

[77]  J. Zumberge Terpenoid biomarker distributions in low maturity crude oils , 1987 .

[78]  D. Rice,et al.  Generation, Accumulation, and Resource Potential of Biogenic Gas , 1981 .

[79]  D. Jarvie,et al.  Detection of Pay Zones and Pay Quality, Gulf of Mexico: Application of Geochemical Techniques , 2001 .

[80]  R. Littke,et al.  On the Atypical Petroleum-Generating Characteristics of Alginite in the Cambrian Alum Shale , 1992 .

[81]  D. M. Clementz Effect of Oil and Bitumen Saturation on Source-Rock Pyrolysis , 1979 .

[82]  R. Pelet Evaluation quantitative des produits forms lors de l'volution gochimique de la matire organique , 1985 .

[83]  G. Claypool,et al.  Carbon Isotope Composition of Marine Crude Oils (1) , 1992 .

[84]  Sheila M. Olmstead,et al.  Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective , 2015 .

[85]  R. Loucks,et al.  Comment on “Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)” by Bernard et al. (2012) , 2014 .

[86]  F. Behar,et al.  Rock-Eval 6 Technology: Performances and Developments , 2001 .

[87]  J. Schieber,et al.  Common Themes in the Formation and Preservation of Intrinsic Porosity in Shales and Mudstones - Illustrated with Examples Across the Phanerozoic , 2010 .

[88]  D. Welte,et al.  Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography , 1980 .

[89]  F. Behar,et al.  Chapter 2: Compositional Modeling of Gas Generation from Two Shale Gas Resource Systems: Barnett Shale (United States) and Posidonia Shale (Germany) , 2013 .

[90]  Ronald J. Hill,et al.  Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas , 2007 .

[91]  P. Kuenen,et al.  Sedimentary History of the Ventura Basin, California, and the Action of Turbidity Currents , 1951 .

[92]  E. Lehne,et al.  A reproducible and linear method for separating asphaltenes from crude oil , 2008 .

[93]  Daniel M. Jarvie,et al.  Oil and gas geochemistry and petroleum systems of the Fort Worth Basin , 2007 .

[94]  B. Simoneit,et al.  Organic geochemical indicators of palaeoenvironmental conditions of sedimentation , 1978 .

[95]  Tongwei Zhang,et al.  Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas , 2012 .

[96]  D. Taulbee,et al.  Petrologic chemistry of a Devonian type II kerogen , 1987 .

[97]  M. Schoell Stable Isotopes in Petroleum Research , 1984 .

[98]  R. W. Jones Some Mass Balance and Geological Constraints on Migration Mechanisms , 1981 .

[99]  W. Ricken Bedding rhythms and cyclic sequences as documented in organic carbon-carbonate patterns, Upper Cretaceous, Western Interior, U.S. , 1996 .

[100]  D. Welte,et al.  Age-trend in carbon isotopic composition in Paleozoic sediments , 1975, Naturwissenschaften.

[101]  Y. Gensterblum,et al.  High-Pressure Methane Sorption Isotherms of Black Shales from The Netherlands , 2012 .

[102]  J. E. Ogala,et al.  Using aromatic biological markers as a tool for assessing thermal maturity of source rocks in the Campano-Maastrichtian Mamu Formation, southeastern Nigeria , 2014 .

[103]  B. Horsfield,et al.  Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin) , 2012 .

[104]  D. Welte,et al.  Kinetics of petroleum generation and cracking by programmed-temperature closed-system pyrolysis of Toarcian Shales , 1998 .

[105]  A. Schimmelmann,et al.  Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion , 2013 .

[106]  B. Horsfield,et al.  The Barnett Shale: Compositional fractionation associated with intraformational petroleum migration, retention, and expulsion , 2015 .

[107]  M. Teichmüller,et al.  Aromatic components of coal: relation of distribution pattern to rank , 1982 .

[108]  Stable carbon isotopic fractionation of individual n-alkanes accompanying primary migration: Evidence from hydrocarbon generation–expulsion simulations of selected terrestrial source rocks , 2009 .

[109]  J. Curtis Fractured shale-gas systems , 2002 .

[110]  J. Jumeau,et al.  Carbon isotope variations in n-alkanes and isoprenoids of whole oils , 1991 .

[111]  B. Tissot,et al.  Source rock characterization method for petroleum exploration , 1977 .

[112]  Martin J. Kennedy,et al.  Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter , 2015 .

[113]  M. Curtis,et al.  Relationship Between Organic Shale Microstructure and Hydrocarbon Generation , 2013 .

[114]  R. M. Pollastro Natural Fractures, Composition, Cyclicity, and Diagenesis of the Upper Cretaceous Niobrara Formation, Berthoud Field, Colorado , 2010 .

[115]  W. Hughes,et al.  Geochemistry of oils and condensates, K Field, offshore Taiwan: a case study in migration fractionation , 1993 .

[116]  C. Clayton Effect of maturity on carbon isotope ratios of oils and condensates , 1991 .

[117]  M. Curtis,et al.  Development of organic porosity in the Woodford Shale with increasing thermal maturity , 2012 .

[118]  B. Horsfield,et al.  The conversion of oil into gas in petroleum reservoirs. Part 1 : Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis , 1997 .

[119]  K. Milliken,et al.  “Cherty” stringers in the Barnett Shale are agglutinated foraminifera , 2007 .

[120]  C. Lewis,et al.  Fractionation of biological markers in crude oils during migration and the effects on correlation and maturation parameters , 1988 .

[121]  Leigh C. Price and Charles E. Bark SUPPRESSION OF VITRINITE REFLECTANCE IN AMORPHOUS RICH KEROGEN --A MAJOR UNRECOGNIZED PROBLEM , 1985 .

[122]  S. Larter 8 – APPLICATION OF ANALYTICAL PYROLYSIS TECHNIQUES TO KEROGEN CHARACTERIZATION AND FOSSIL FUEL EXPLORATION/EXPLOITATION , 1984 .

[123]  D. Jarvie Components and processes affecting producibility and commerciality of shale resource systems , 2014 .

[124]  B. Horsfield Practical criteria for classifying kerogens: Some observations from pyrolysis-gas chromatography , 1989 .

[125]  D. Welte,et al.  Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter , 1982 .

[126]  R. Loucks,et al.  Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic-Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrock , 2014 .

[127]  G. Claypool,et al.  Organic Composition of Some Upper Cretaceous Shale, Powder River Basin, Wyoming , 1980 .

[128]  R. D. Primio,et al.  Predicting the generation of heavy oils in carbonate/evaporitic environments using pyrolysis methods , 1996 .

[129]  Z. Sofer Stable Carbon Isotope Compositions of Crude Oils: Application to Source Depositional Environments and Petroleum Alteration , 1984 .

[130]  J. Hayes,et al.  Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. , 1990, Organic geochemistry.

[131]  D. Baker Organic Geochemistry of Cherokee Group in Southeastern Kansas and Northeastern Oklahoma , 1960 .

[132]  A. Grøver,et al.  Adsorption of petroleum compounds in vitrinite: implications for petroleum expulsion from coal , 2005 .

[133]  T. Guo,et al.  Thermal evolution and applications of aromatic hydrocarbons in highly mature coal-bearing source rocks of the Upper Triassic Xujiahe Formation in the northern Sichuan Basin , 2015, Science China Earth Sciences.

[134]  J. Moldowan,et al.  The effect of biodegradation on steranes and terpanes in crude oils , 1979 .

[135]  J. R. Marquart,et al.  Determination of noraml paraffins in petroleum heavy distillates by urea adduction and gas chromatography , 1968 .

[136]  D. Welte,et al.  Petroleum Formation and Occurrence , 1989 .

[137]  D. Jarvie,et al.  Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment , 2007 .

[138]  A. Pepper,et al.  Simple kinetic models of petroleum formation. Part I : oil and gas generation from kerogen , 1995 .

[139]  M. Schoell Recent advances in petroleum isotope geochemistry , 1984 .

[140]  D. Bottjer,et al.  Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: Application to upper cretaceous niobrara formation, Colorado , 1989 .

[141]  Quinn R. Passey,et al.  From Oil-Prone Source Rock to Gas-Producing Shale Reservoir - Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs , 2010 .

[142]  B. Horsfield,et al.  Source Rock Evaluation by Pyrolysis-Gas Chromatography , 1983 .

[143]  K. Thomas,et al.  Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale , 2016 .

[144]  C. McAuliffe,et al.  Oil and Gas Migration--Chemical and Physical Constraints , 1979 .

[145]  J. Prausnitz,et al.  Regular and related solutions : the solubility of gases, liquids, and solids , 1970 .

[146]  S. Epstein,et al.  Carbon Isotopic Compositions of Petroleums and Other Sedimentary Organic Materials , 1958 .

[147]  Kent A. Bowker,et al.  The Barnett Shale Play, Fort Worth Basin , 2006 .

[148]  R. Wirth,et al.  Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale , 2009 .

[149]  U. Ritter Solubility of petroleum compounds in kerogen: implications for petroleum expulsion , 2003 .

[150]  D. O. Cox,et al.  Petroleum system and production characteristics of the Muddy (J) Sandstone (Lower Cretaceous) Wattenberg continuous gas field, Denver basin, Colorado , 2003 .

[151]  B. Krooss,et al.  Experimental investigation of the compositional variation of petroleum during primary migration , 2007 .

[152]  C. Barker Pyrolysis Techniques for Source-Rock Evaluation , 1974 .

[153]  K. Peters,et al.  Geochemistry of Crude Oils from Eastern Indonesia , 1999 .

[154]  F. F. Langford,et al.  Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon , 1990 .

[155]  M. D. Rudnicki,et al.  Organic matter–hosted pore system, Marcellus Formation (Devonian), Pennsylvania , 2013 .

[156]  Daniel M. Jarvie,et al.  Shale Resource Systems for Oil and Gas: Part 1—Shale-gas Resource Systems , 2012 .

[157]  Glen S. Tanck Distribution and origin of organic carbon in the Upper Cretaceous Niobrara Formation and Sharon Springs Member of the Pierre Shale, Western Interior, United States , 1997 .

[158]  M. Vandenbroucke,et al.  Molecular parameters of maturation in the Toarcian shales, Paris Basin, France—I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes , 1980 .

[159]  B. Horsfield,et al.  Neoformation of Inert Carbon during the Natural Maturation of a Marine Source Rock: Bakken Shale, Williston Basin , 1996 .

[160]  K. Milliken,et al.  Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas , 2015 .

[161]  J. Rouzaud,et al.  Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation , 2014 .

[162]  R. Littke,et al.  Geochemical effects of petroleum migration and expulsion from Toarcian source rocks in the Hils syncline area, NW-Germany , 1988 .

[163]  Tongwei Zhang,et al.  Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems , 2012 .

[164]  L. Stright,et al.  Geologic Controls on Oil Production from the Niobrara Formation, Silo Field, Laramie County, Wyoming , 2013 .

[165]  M. Radke,et al.  Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. I: Gross composition of C15+-soluble organic matter and molecular composition of C15+-saturated hydrocarbons , 1988 .

[166]  Steve Larter,et al.  Some pragmatic perspectives in source rock geochemistry , 1988 .

[167]  R. Slatt,et al.  Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas , 2012 .

[168]  Hollis D. Hedberg,et al.  Gravitational compaction of clays and shales , 1936 .

[169]  R. Carlson,et al.  Steroid biomarker-clay mineral adsorption free energies: Implications to petroleum migration indices , 1986 .

[170]  John G. Sclater,et al.  Continental stretching: An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea Basin , 1980 .

[171]  Wang Yong Discussion on an evaluation method of shale oil and gas in Jiyang depression:a case study on Luojia area in Zhanhua sag , 2013 .

[172]  Fred P. Wang,et al.  Screening Criteria for Shale-Gas Systems , 2009 .

[173]  S. Sonnenberg Chapter 1: The Niobrara Petroleum System: A New Resource Play in the Rocky Mountain Region , 2011 .

[174]  H. Lowenstam,et al.  Minerals formed by organisms. , 1981, Science.

[175]  E. J. Gallegos,et al.  Relationship Between Petroleum Composition and Depositional Environment of Petroleum Source Rocks , 1985 .

[176]  James J. Hickey,et al.  Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T.P. Sims well, Wise County, Texas , 2007 .

[177]  Julia F. W. Gale,et al.  Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments , 2007 .

[178]  W. A. Young,et al.  Expulsion from hydrocarbon sources: the role of organic absorption , 1992 .

[179]  B. Horsfield,et al.  Reply to comment on “Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)” , 2014 .

[180]  D. Leythaeuser,et al.  Expulsion of petroleum hydrocarbons from shale source rocks , 1983, Nature.

[181]  R. R. Berg,et al.  Capillary Pressures in Stratigraphic Traps , 1975 .

[182]  J. Smith,et al.  Isoprenoid Hydrocarbons in Coal and Petroleum , 1969, Nature.

[183]  A. Pepper Estimating the petroleum expulsion behaviour of source rocks: a novel quantitative approach , 1991, Geological Society, London, Special Publications.

[184]  D. Welte,et al.  Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type , 1986 .

[185]  Q. Yin,et al.  A novel molecular index for secondary oil migration distance , 2013, Scientific Reports.

[186]  J. Bernhard The distribution of benthic foraminifera with respect to oxygen concentration and organic carbon levels in shallow-water Antarctic sediments , 1989 .

[187]  K. Thompson Fractionated aromatic petroleums and the generation of gas-condensates , 1987 .

[188]  J. Rullkötter,et al.  Natural and artificial maturation of biological markers in a Toarcian shale from northern Germany , 1988 .

[189]  Martin Schoell,et al.  Genetic Characterization of Natural Gases , 1983 .

[190]  D. E. Hattin Petrology of Smoky Hill Member, Niobrara Chalk (Upper Cretaceous), in type area, western Kansas , 1981 .

[191]  L. C. Price,et al.  Aqueous Solubility of Petroleum as Applied to Its Origin and Primary Migration , 1976 .

[192]  B. Sageman,et al.  Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, U.S.A.: A Coniacian–Santonian orbital timescale , 2008 .

[193]  M. Engel,et al.  Geochromatography in petroleum migration: a review , 1991, Geological Society, London, Special Publications.

[194]  T. Chirila,et al.  The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some Ancient sediments and petroleums , 1985 .

[195]  M. Curtis,et al.  Structural Characterization of Gas Shales on the Micro- and Nano-Scales , 2010 .

[196]  P. Leplat,et al.  Comparative Rock-Eval pyrolysis as an improved tool for sedimentary organic matter analysis , 1990 .

[197]  Kenneth S. Okiongbo,et al.  Changes in Type II Kerogen Density as a Function of Maturity: Evidence from the Kimmeridge Clay Formation , 2005 .

[198]  P. Peng,et al.  Adsorption of mudstone source rock for shale oil – Experiments, model and a case study , 2016 .

[199]  J. Damsté,et al.  Rapid estimation of the organic sulphur content of kerogens, coals and asphaltenes by pyrolysis-gas chromatography , 1990 .

[200]  S. Epstein,et al.  Hydrogen and carbon isotopes of petroleum and related organic matter , 1981 .

[201]  D. Fütterer The Solid Phase of Marine Sediments , 2000 .

[202]  K. Peters,et al.  Early Generation Characteristics of a Sulfur-Rich Monterey Kerogen , 1992 .