Computing subschemes of the border basis scheme
暂无分享,去创建一个
[1] Mark D. Haiman,et al. t, q-Catalan numbers and the Hilbert scheme , 1998, Discret. Math..
[2] R. Notari,et al. Irreducibility of the Gorenstein loci of Hilbert schemes via ray families , 2014, 1405.7678.
[3] Alexander Grothendieck,et al. Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert , 1961 .
[4] On the irreducibility and the singularities of the Gorenstein locus of the punctual Hilbert scheme of degree 10 , 2011 .
[5] Joachim Jelisiejew,et al. Białynicki-Birula decomposition for reductive groups , 2018, Journal de Mathématiques Pures et Appliquées.
[6] L. Robbiano,et al. On the Cayley-Bacharach Property , 2018, Communications in Algebra.
[7] Mark E. Huibregtse. An elementary construction of the multigraded Hilbert scheme of points , 2006 .
[8] Martin Kreuzer,et al. Deformations of border bases , 2007, 0710.2641.
[9] L. Robbiano,et al. Algorithms for checking zero-dimensional complete intersections , 2019, Journal of Commutative Algebra.
[10] A. Iarrobino,et al. Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .
[11] Martin Kreuzer,et al. Computational Linear and Commutative Algebra , 2016 .
[12] Lorenzo Robbiano. On border basis and Gröbner basis schemes , 2008 .
[13] R. Notari,et al. On the Gorenstein locus of some punctual Hilbert schemes , 2008, 0803.1135.
[14] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[15] The Geometry of Border Bases , 2010, 1004.1044.
[16] Martin Kreuzer,et al. Computational Commutative Algebra 1 , 2000 .
[17] Francesca Cioffi,et al. Smoothable Gorenstein Points Via Marked Schemes and Double-generic Initial Ideals , 2017, Exp. Math..