Eurographics Symposium on Geometry Processing 2015 Can Bi-cubic Surfaces Be Class A?
暂无分享,去创建一个
Jörg Peters | Kestutis Karciauskas | M. Ben-Chen | J. Peters | K. Karciauskas | K. Karčiauskas | Ligang Liu | Jörg Peters
[1] Jörg Peters,et al. Smooth Bi-3 spline surfaces with fewest knots , 2011, Comput. Aided Des..
[2] J. A. Gregory. Smooth interpolation without twist constraints , 1974 .
[3] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[4] Bruno Lévy,et al. Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.
[5] John A. Gregory,et al. Filling polygonal holes with bicubic patches , 1994, Comput. Aided Geom. Des..
[6] Charles T. Loop,et al. Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.
[7] Jörg Peters,et al. Improved shape for multi-surface blends , 2015, Graph. Model..
[8] Thomas J. Cashman,et al. Beyond Catmull–Clark? A Survey of Advances in Subdivision Surface Methods , 2012, Comput. Graph. Forum.
[9] Scott Schaefer,et al. Approximating subdivision surfaces with Gregory patches for hardware tessellation , 2009, SIGGRAPH 2009.
[10] Charles T. Loop,et al. Approximating subdivision surfaces with Gregory patches for hardware tessellation , 2009, ACM Trans. Graph..
[11] Yifan Chen,et al. Highlight-line algorithm for realtime surface-quality assessment , 1994, Comput. Aided Des..
[12] Stephen Mann,et al. Parametric triangular Bézier surface interpolation with approximate continuity , 2008, SPM '08.