GPR phase-based techniques for profiling rough surfaces and detecting small, low-contrast landmines under flat ground

We present a new technique whereby phase variation signatures are used to profile two-dimensional (2-D) rough surfaces and to discern shallowly buried, small, low-contrast landmines under a flat ground. The method has been tested using data measured over a composite surface containing two rough dielectric surface patches, and over a flat ground under which small, low-contrast antipersonnel landmines are shallowly buried. The results show that the phase-based technique is capable of profiling rough surfaces and of detecting small, low-contrast landmines with different internal structures buried underneath a flat ground.

[1]  Eric L. Miller,et al.  Three-dimensional subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: use of the steepest descent fast multipole method , 2001, IEEE Trans. Geosci. Remote. Sens..

[2]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[3]  A. Hippel,et al.  Dielectric Materials and Applications , 1995 .

[4]  Magda El-Shenawee The multiple interaction model for nonshallow scatterers buried beneath 2-d random rough surfaces , 2002, IEEE Trans. Geosci. Remote. Sens..

[5]  D. V. Giri,et al.  Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas , 1998 .

[6]  D. Gabor An introduction to coherent optics and holography , 1966 .

[7]  Lawrence Carin,et al.  Microwave underground propagation and detection , 2002 .

[8]  Keith D. Paulsen,et al.  Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric , 1996, IEEE Trans. Geosci. Remote. Sens..

[9]  Vincenzo Galdi,et al.  Multifrequency reconstruction of moderately rough interfaces via quasi-ray Gaussian beams , 2002, IEEE Trans. Geosci. Remote. Sens..

[10]  J. E. Hipp Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture , 1974 .

[11]  M. F. Chen,et al.  Computer simulation of wave scattering from a dielectric random surface in two dimensions: cylindrical case , 1990 .

[12]  L. Peters,et al.  Ground penetrating radar as a subsurface environmental sensing tool , 1994, Proc. IEEE.

[13]  W. Clem Karl,et al.  Multifrequency subsurface sensing in the presence of a moderately rough air–soil interface via quasi‐ray Gaussian beams , 2002 .

[14]  David J. Daniels,et al.  Surface-Penetrating Radar , 1996 .

[15]  S. Tjuatja,et al.  Numerical simulation of omnidirectional scattering from three-dimensional randomly rough dielectric surfaces , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[16]  L. P. Ligthart,et al.  Performance analysis of a compact range in the time domain , 2002 .

[17]  K. Michalski,et al.  Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. I. Theory , 1990 .

[18]  Leung Tsang,et al.  Studies of the angular correlation function of scattering by random rough surfaces with and without a buried object , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  Lawrence Carin,et al.  Time-domain sensing of targets buried under a Gaussian, exponential, or fractal rough interface , 2001, IEEE Trans. Geosci. Remote. Sens..

[20]  L. P. Ligthart,et al.  Potentials of ultra-short-pulse time-domain scattering measurements , 2000 .

[21]  D. Wehner High Resolution Radar , 1987 .

[22]  Werner Wiesbeck,et al.  Electromagnetic scattering by multiple three-dimensional scatterers buried under multilayered media. I. Theory , 1998, IEEE Trans. Geosci. Remote. Sens..

[23]  John B. Schneider,et al.  A Monte-Carlo FDTD technique for rough surface scattering , 1995 .

[24]  Weng Cho Chew,et al.  Fast algorithm for electromagnetic scattering by buried 3-D dielectric objects of large size , 1999, IEEE Trans. Geosci. Remote. Sens..

[25]  L. P. Ligthart,et al.  Wideband short-range GPR interferometric phase processing for 3D rough surfaces with correction of antenna phase distortions , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[26]  Chi-Chih Chen,et al.  A standoff, focused-beam land mine radar , 2000, IEEE Trans. Geosci. Remote. Sens..

[27]  Inder J. Gupta,et al.  A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines , 2000, IEEE Trans. Geosci. Remote. Sens..

[28]  K. Iizuka,et al.  Step‐frequency radar , 1984 .

[29]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[30]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[31]  Chi-Chih Chen,et al.  Ultrawide-bandwidth fully-polarimetric ground penetrating radar classification of subsurface unexploded ordnance , 2001, IEEE Trans. Geosci. Remote. Sens..

[32]  Leo P. Ligthart,et al.  Detection and imaging of small buried 3D non-metallic objects with multistatic phase-based GPR signatures , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[33]  J. Robertson Wave scattering from rough surfaces , 1995 .

[34]  Carey M. Rappaport,et al.  Monte Carlo simulations for clutter statistics in minefields: AP-mine-like-target buried near a dielectric object beneath 2-D random rough ground surfaces , 2002, IEEE Trans. Geosci. Remote. Sens..

[35]  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34. NO. 4, JULY 1996 Universal Multifractal Scaling of Synthetic , 1996 .