Sensors and regulators of intracellular pH

Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.

[1]  R. Vaughan-Jones,et al.  Intrinsic H+ ion mobility in the rabbit ventricular myocyte , 2002, The Journal of physiology.

[2]  K. Gunter,et al.  Mitochondrial calcium transport: physiological and pathological relevance. , 1994, The American journal of physiology.

[3]  J. Abe,et al.  14-3-3 Binding to Na+/H+ Exchanger Isoform-1 Is Associated with Serum-dependent Activation of Na+/H+ Exchange* , 2001, The Journal of Biological Chemistry.

[4]  S. Ruetz,et al.  Functional activation of plasma membrane anion exchangers occurs in a pre-Golgi compartment , 1993, The Journal of cell biology.

[5]  J. Pouysségur,et al.  The Na+/H+ exchanger isoform 1 (NHE1) is a novel member of the calmodulin-binding proteins. Identification and characterization of calmodulin-binding sites. , 1994, The Journal of biological chemistry.

[6]  S. Grinstein,et al.  Determinants of the pH of the Golgi Complex* , 2000, The Journal of Biological Chemistry.

[7]  S. Grinstein,et al.  Emerging roles of alkali cation/proton exchangers in organellar homeostasis. , 2007, Current opinion in cell biology.

[8]  X. Sun,et al.  Mitochondrial cation transport systems. , 1995, Methods in enzymology.

[9]  A. Verkman,et al.  Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. , 2005, Biochemical and biophysical research communications.

[10]  Richard A Rachubinski,et al.  Spatiotemporal dynamics of the ER-derived peroxisomal endomembrane system. , 2009, International review of cell and molecular biology.

[11]  P. Igarashi,et al.  NHE3: a Na+/H+ exchanger isoform of renal brush border. , 1993, The American journal of physiology.

[12]  S. Grinstein,et al.  Focal localization of the NHE‐1 isoform of the Na+/H+ antiport: assessment of effects on intracellular pH. , 1993, The EMBO journal.

[13]  M. Shigekawa,et al.  Expression of Calcineurin B Homologous Protein 2 Protects Serum Deprivation-induced Cell Death by Serum-independent Activation of Na+/H+ Exchanger* , 2002, The Journal of Biological Chemistry.

[14]  Jie J. Zheng,et al.  Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization , 2009, Nature Cell Biology.

[15]  D. Barber,et al.  Beyond ion translocation: structural functions of the sodium–hydrogen exchanger isoform-1 , 2007, Current opinion in nephrology and hypertension.

[16]  E. Padan,et al.  Multiconformation continuum electrostatics analysis of the NhaA Na+/H+ antiporter of Escherichia coli with functional implications. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Shigekawa,et al.  Kinetic Dissection of Two Distinct Proton Binding Sites in Na+/H+ Exchangers by Measurement of Reverse Mode Reaction* , 2003, Journal of Biological Chemistry.

[18]  M. Shigekawa,et al.  Mutations of Arg440 and Gly455/Gly456 Oppositely Change pH Sensing of Na+/H+ Exchanger 1* , 2003, The Journal of Biological Chemistry.

[19]  R. Vaughan-Jones,et al.  A novel role for carbonic anhydrase: cytoplasmic pH gradient dissipation in mouse small intestinal enterocytes , 1999, The Journal of physiology.

[20]  Tullio Pozzan,et al.  Mitochondrial pH Monitored by a New Engineered Green Fluorescent Protein Mutant* , 2004, Journal of Biological Chemistry.

[21]  M. Crompton,et al.  The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. , 1978, European journal of biochemistry.

[22]  C. Supuran,et al.  Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. , 2004, Journal of enzyme inhibition and medicinal chemistry.

[23]  M. Donowitz,et al.  Evolutionary origins of eukaryotic sodium/proton exchangers. , 2005, American journal of physiology. Cell physiology.

[24]  U. Kornak,et al.  Loss of the chloride channel ClC‐7 leads to lysosomal storage disease and neurodegeneration , 2005, The EMBO journal.

[25]  P. Kane The long physiological reach of the yeast vacuolar H+-ATPase , 2007, Journal of bioenergetics and biomembranes.

[26]  J. Kinsella,et al.  Proton dependence of the partial reactions of the sodium-proton exchanger in renal brush border membranes. , 1992, The Journal of biological chemistry.

[27]  Michael Forgac,et al.  Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology , 2007, Nature Reviews Molecular Cell Biology.

[28]  T. Doetschman,et al.  Mice with a targeted disruption of the AE2 Cl-/HCO3- exchanger are achlorhydric. , 2004, The Journal of biological chemistry.

[29]  E. Padan,et al.  Combined computational and biochemical study reveals the importance of electrostatic interactions between the “pH sensor” and the cation binding site of the sodium/proton antiporter NhaA of Escherichia coli , 2009, Proteins.

[30]  T. Jentsch,et al.  CLC Chloride Channels and Transporters: From Genes to Protein Structure, Pathology and Physiology , 2008, Critical reviews in biochemistry and molecular biology.

[31]  S. Grinstein,et al.  In Situ Measurements of the pH of Mammalian Peroxisomes Using the Fluorescent Protein pHluorin* , 2001, The Journal of Biological Chemistry.

[32]  S. Alper Molecular physiology and genetics of Na+-independent SLC4 anion exchangers , 2009, Journal of Experimental Biology.

[33]  György Hajnóczky,et al.  Decoding of cytosolic calcium oscillations in the mitochondria , 1995, Cell.

[34]  C. Sardet,et al.  A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Gert Matthijs,et al.  Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2 , 2008, Nature Genetics.

[36]  A. Schwab,et al.  Role of the Na+/H+ exchanger NHE1 in cell migration , 2006, Acta physiologica.

[37]  J. Reddy,et al.  Peroxisomal lipid metabolism. , 1994, Annual review of nutrition.

[38]  A. Marolt [Facts and hypotheses]. , 1953, Schweizerische Monatsschrift fur Zahnheilkunde = Revue mensuelle suisse d'odonto-stomatologie.

[39]  A. Schwab,et al.  Protons make tumor cells move like clockwork , 2009, Pflügers Archiv - European Journal of Physiology.

[40]  A. Schulz,et al.  Loss of the ClC-7 Chloride Channel Leads to Osteopetrosis in Mice and Man , 2001, Cell.

[41]  J. Casey,et al.  Transport activity of AE3 chloride/bicarbonate anion-exchange proteins and their regulation by intracellular pH. , 1999, The Biochemical journal.

[42]  P. Aronson Kinetic properties of the plasma membrane Na+-H+ exchanger. , 1985, Annual review of physiology.

[43]  D. Barber,et al.  Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1 , 2002, The Journal of cell biology.

[44]  D. Hilgemann,et al.  Steady-state Function of the Ubiquitous Mammalian Na/H Exchanger (NHE1) in Relation to Dimer Coupling Models with 2Na/2H Stoichiometry , 2008, The Journal of General Physiology.

[45]  J. Pouysségur,et al.  Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+. , 1984, The Journal of biological chemistry.

[46]  M. Thangaraju,et al.  Interdependent regulation of intracellular acidification and SHP-1 in apoptosis. , 1999, Cancer research.

[47]  D. Barber,et al.  A developmentally regulated Na-H exchanger in Dictyostelium discoideum is necessary for cell polarity during chemotaxis , 2005, The Journal of cell biology.

[48]  Peter Philippsen,et al.  Contribution of the Endoplasmic Reticulum to Peroxisome Formation , 2005, Cell.

[49]  D. Barber,et al.  Direct binding of the Na--H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. , 2000, Molecular cell.

[50]  S. DeVries,et al.  Exocytosed Protons Feedback to Suppress the Ca2+ Current in Mammalian Cone Photoreceptors , 2001, Neuron.

[51]  S. D. de Laat,et al.  Bicarbonate determines cytoplasmic pH and suppresses mitogen-induced alkalinization in fibroblastic cells. , 1988, The Journal of biological chemistry.

[52]  S. Grinstein,et al.  Intracellular Ph Regulation by Na+/H+ Exchange Requires Phosphatidylinositol 4,5-Bisphosphate , 2000, The Journal of cell biology.

[53]  L. Fliegel,et al.  Mitogen-activated Protein Kinase-dependent Activation of the Na+/H+ Exchanger Is Mediated through Phosphorylation of Amino Acids Ser770 and Ser771* , 2007, Journal of Biological Chemistry.

[54]  T. Jentsch CLC Chloride Channels and Transporters: From Genes to Protein Structure, Pathology and Physiology , 2008 .

[55]  R. Bridges,et al.  CFTR and Bicarbonate Secretion to Epithelial Cells , 2003 .

[56]  이민구,et al.  A molecular mechanism for aberrant CFTR-dependent HCO3- transport in cystic fibrosis , 2002 .

[57]  N. Huzel,et al.  Calcium-binding ATPase inhibitor protein of bovine heart mitochondria. Role in ATP synthesis and effect of Ca2+. , 1989, Biochemistry.

[58]  E. Padan,et al.  The influence of protonation states on the dynamics of the NhaA antiporter from Escherichia coli. , 2007, Biophysical journal.

[59]  T. Pozzan,et al.  Calcium Dynamics in the Peroxisomal Lumen of Living Cells* , 2008, Journal of Biological Chemistry.

[60]  R. Vaughan-Jones,et al.  Intracellular pH regulation in heart. , 2009, Journal of molecular and cellular cardiology.

[61]  M. Brand,et al.  Apoptosis and the laws of thermodynamics , 2000, Nature Cell Biology.

[62]  D. Barber,et al.  p160ROCK mediates RhoA activation of Na–H exchange , 1998, The EMBO journal.

[63]  Min Goo Lee,et al.  A molecular mechanism for aberrantCFTR‐dependent HCO3− transport in cystic fibrosis , 2002, The EMBO journal.

[64]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[65]  S. Grinstein,et al.  Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role in cell proliferation. , 1994, The Journal of biological chemistry.

[66]  S. Wakabayashi,et al.  Functional importance of charged residues within the putative intracellular loops in pH regulation by Na+/ H+ exchanger NHE1 , 2007, The FEBS journal.

[67]  Yanru Wang,et al.  Structure and regulation of the vacuolar ATPases. , 2008, Biochimica et biophysica acta.

[68]  Michael S. Cohen,et al.  Evidence for Direct Regulation of Myocardial Na+/H+ Exchanger Isoform 1 Phosphorylation and Activity by 90-kDa Ribosomal S6 Kinase (RSK): Effects of the Novel and Specific RSK Inhibitor fmk on Responses to α1-Adrenergic Stimulation , 2007, Molecular Pharmacology.

[69]  M. Lazdunski,et al.  H+‐Gated Cation Channelsa , 1999 .

[70]  S. Grinstein,et al.  Subcellular localization of the Na+/H+ exchanger NHE1 in rat myocardium. , 1999, American journal of physiology. Heart and circulatory physiology.

[71]  S. W. Jones A Plausible Model , 1999 .

[72]  M. Numata,et al.  Molecular Cloning and Characterization of a Novel (Na+,K+)/H+ Exchanger Localized to the trans-Golgi Network* , 2001, The Journal of Biological Chemistry.

[73]  D. Barber,et al.  A calcineurin homologous protein inhibits GTPase-stimulated Na-H exchange. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[74]  N. Sperelakis,et al.  Cell Physiology Source Book , 1951 .

[75]  M. Lazdunski,et al.  H(+)-gated cation channels. , 1999, Annals of the New York Academy of Sciences.

[76]  J. Mccormack,et al.  Role of calcium ions in regulation of mammalian intramitochondrial metabolism. , 1990, Physiological reviews.

[77]  T. Doetschman,et al.  Mice with a Targeted Disruption of the AE2 Exchanger Are Achlorhydric , 2004 .

[78]  G. Sachs,et al.  The gastric HK-ATPase: structure, function, and inhibition , 2008, Pflügers Archiv - European Journal of Physiology.

[79]  O. Weisz Organelle Acidification and Disease , 2003, Traffic.

[80]  S. Grinstein,et al.  Internal pH-sensitive site couples Cl-(-)HCO3- exchange to Na+-H+ antiport in lymphocytes. , 1989, The American journal of physiology.

[81]  C. Cotton,et al.  The stoichiometry of the electrogenic sodium bicarbonate cotransporter NBC1 is cell‐type dependent , 2001, The Journal of physiology.

[82]  J. Lorenz,et al.  Physiological Functions of Plasma Membrane and Intracellular Ca2+ Pumps Revealed by Analysis of Null Mutants , 2003, Annals of the New York Academy of Sciences.

[83]  Roger Y. Tsien,et al.  Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis , 2000, Nature Cell Biology.

[84]  Keerang Park,et al.  Mouse Down-regulated in Adenoma (DRA) Is an Intestinal Cl−/HCO3 − Exchanger and Is Up-regulated in Colon of Mice Lacking the NHE3 Na+/H+Exchanger* , 1999, The Journal of Biological Chemistry.

[85]  M. Davis,et al.  Protons Act as a Transmitter for Muscle Contraction in C. elegans , 2008, Cell.

[86]  Q. Al-Awqati,et al.  Defective acidification of the biosynthetic pathway in cystic fibrosis , 1993, Journal of Cell Science.

[87]  S. Grinstein,et al.  Na+/H+ exchange and pH regulation in the control of neutrophil chemokinesis and chemotaxis. , 2008, American journal of physiology. Cell physiology.

[88]  A Miyawaki,et al.  Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[89]  P. Igarashi,et al.  Immunocytochemical characterization of Na(+)-H+ exchanger isoform NHE-1 in rabbit kidney. , 1992, The American journal of physiology.

[90]  S. Grinstein,et al.  Cytoplasmic pH regulation in normal and abnormal neutrophils. Role of superoxide generation and Na+/H+ exchange. , 1986, The Journal of biological chemistry.

[91]  W. Boron,et al.  Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG , 2009, Proceedings of the National Academy of Sciences.

[92]  D. Meredith,et al.  The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond , 2004, Pflügers Archiv.

[93]  Vincent J Hilser,et al.  Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Schelling,et al.  Regulation of cell survival by Na+/H+ exchanger-1. , 2008, American journal of physiology. Renal physiology.

[95]  N. Nakamura,et al.  Calcineurin homologous protein isoform 2 (CHP2), Na+/H+ exchangers-binding protein, is expressed in intestinal epithelium. , 2003, Biological & pharmaceutical bulletin.

[96]  J. Pouysségur,et al.  Cytoplasmic pH, a key determinant of growth factor‐induced DNA synthesis in quiescent fibroblasts , 1985, FEBS letters.

[97]  F. Lang,et al.  Inhibition of Na+/H+ Exchanger Activity by Parvovirus B19 Protein NS1 , 2009, Cellular Physiology and Biochemistry.

[98]  G. Brierley,et al.  Cation transport systems in mitochondria: Na+ and K+ uniports and exchangers , 1994, Journal of bioenergetics and biomembranes.

[99]  Lianwei Jiang,et al.  Functional characterization and regulation by pH of murine AE2 anion exchanger expressed in Xenopus oocytes. , 1994, The American journal of physiology.

[100]  Dennis Brown,et al.  Regulation of the V-ATPase in kidney epithelial cells: dual role in acid–base homeostasis and vesicle trafficking , 2009, Journal of Experimental Biology.

[101]  F. Lang,et al.  Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis , 2004, Cell Death and Differentiation.

[102]  A. Grace,et al.  Mechanisms of pHi recovery after global ischemia in the perfused heart. , 1993, Circulation research.

[103]  R. Moreno-Sánchez Inhibition of oxidative phosphorylation by a Ca2+-induced diminution of the adenine nucleotide translocator. , 1983, Biochimica et biophysica acta.

[104]  J. Casey,et al.  Bicarbonate transport in cell physiology and disease. , 2009, The Biochemical journal.

[105]  W. Wurst,et al.  Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6 , 2006, Proceedings of the National Academy of Sciences.

[106]  K. Muegge,et al.  Trophic Factor Withdrawal: p38 Mitogen-Activated Protein Kinase Activates NHE1, Which Induces Intracellular Alkalinization , 2001, Molecular and Cellular Biology.

[107]  A. Verkman,et al.  Carbon Dioxide Permeability of Aquaporin-1 Measured in Erythrocytes and Lung of Aquaporin-1 Null Mice and in Reconstituted Proteoliposomes* , 2000, The Journal of Biological Chemistry.

[108]  Jan Albrecht,et al.  Regulation of pH in the mammalian central nervous system under normal and pathological conditions: Facts and hypotheses , 2008, Neurochemistry International.

[109]  John Calvin Reed,et al.  The Mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. , 1998, Molecular cell.

[110]  A. Verkman,et al.  Evidence against Defective trans-Golgi Acidification in Cystic Fibrosis* , 1996, The Journal of Biological Chemistry.

[111]  B. Alvarez,et al.  A novel carbonic anhydrase II binding site regulates NHE1 activity. , 2006, Biochemistry.

[112]  Christer Holmberg,et al.  Mutations of the Down–regulated in adenoma (DRA) gene cause congenital chloride diarrhoea , 1996, Nature Genetics.

[113]  J. Keener,et al.  Facilitation of intracellular H+ ion mobility by CO2/HCO3− in rabbit ventricular myocytes is regulated by carbonic anhydrase , 2002, The Journal of physiology.

[114]  Jens T. Mailänder,et al.  Human homolog of mouse tescalcin associates with Na+/H+ exchanger type‐1 , 2001, FEBS letters.

[115]  Thomas J. Jentsch,et al.  ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent's disease , 2000, Nature.

[116]  P. D. Bell,et al.  Macula densa Na(+)/H(+) exchange activities mediated by apical NHE2 and basolateral NHE4 isoforms. , 2000, American journal of physiology. Renal physiology.

[117]  D. Barber,et al.  The Nck-interacting Kinase (NIK) Phosphorylates the Na+-H+ Exchanger NHE1 and Regulates NHE1 Activation by Platelet-derived Growth Factor* , 2001, The Journal of Biological Chemistry.

[118]  V. Bindokas,et al.  CFTR regulates phagosome acidification in macrophages and alters bactericidal activity , 2006, Nature Cell Biology.

[119]  Jérôme J. Lacroix,et al.  A mechanism for the activation of the Na/H exchanger NHE‐1 by cytoplasmic acidification and mitogens , 2004, EMBO reports.

[120]  A. Schwab,et al.  pH Nanoenvironment at the Surface of Single Melanoma Cells , 2007, Cellular Physiology and Biochemistry.

[121]  W F Boron,et al.  Intracellular pH. , 1981, Physiological reviews.

[122]  D. Barber,et al.  Na-H Exchange-dependent Increase in Intracellular pH Times G2/M Entry and Transition* , 2003, Journal of Biological Chemistry.

[123]  D. Hilgemann,et al.  Steady-state Function of the Ubiquitous Mammalian Na/H Exchanger (NHE1) in Relation to Dimer Coupling Models with 2Na/2H Stoichiometry , 2008, The Journal of general physiology.

[124]  M. Shigekawa,et al.  Calcineurin Homologous Protein as an Essential Cofactor for Na+/H+ Exchangers* , 2001, The Journal of Biological Chemistry.

[125]  E. Krebs,et al.  p90(RSK) is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1. , 1999, The Journal of biological chemistry.

[126]  K. Wirtz,et al.  Peroxisomes in human fibroblasts have a basic pH , 1999, Nature Cell Biology.

[127]  M. Romero,et al.  Expression cloning and characterization of a renal electrogenic Na+ /HCO3 − cotransporter , 1997, Nature.

[128]  J. Srivastava,et al.  Intracellular pH sensors: design principles and functional significance. , 2007, Physiology.

[129]  Peter Pohl,et al.  Carbon Dioxide Transport through Membranes* , 2008, Journal of Biological Chemistry.

[130]  S. Grinstein,et al.  The pH of the secretory pathway: measurement, determinants, and regulation. , 2004, Physiology.

[131]  R Y Tsien,et al.  Mechanisms of pH Regulation in the Regulated Secretory Pathway* , 2001, The Journal of Biological Chemistry.