Nanoengineering Energy Conversion and Storage Devices via Atomic Layer Deposition

Nanostructured materials show a promising future in energy conversion and storage. However, different challenges shall be addressed to take the full advantages of nanomaterials, such as excess charge recombination sites yielded from large surface area and inefficient charge carrier separation because of poor material junctions in solar cells and solar water splitting cells, as well as high risk of surface side reactions and low active material density in batteries and supercapacitors. Considering its surface self-limiting reaction mechanism, atomic layer deposition (ALD) enables the deposition of a thin film on high aspect ratio structures with a highly controllable manner (e.g., atomic accuracy and perfect conformity), which make it very suitable to overcome the key challenges associated with the size and dimension decrease of nanomaterials. In this review, the recent progress of the ALD application and processing in energy-related devices is highlighted. Particular emphasis is placed on employing ALD for improving the device performance via synthesizing, modifying, or stabilizing their corresponding components. Finally, the challenges regarding the material synthesis and scalable manufacturing of the ALD technique are also discussed.

[1]  Chang Su Shim,et al.  Ultrathin Atomic Layer Deposited TiO2 for Surface Passivation of Hydrothermally Grown 1D TiO2 Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells , 2015 .

[2]  M. Grätzel,et al.  Sub‐Nanometer Conformal TiO2 Blocking Layer for High Efficiency Solid‐State Perovskite Absorber Solar Cells , 2014, Advanced materials.

[3]  H. Baumgart,et al.  Precise control of highly ordered arrays of nested semiconductor/metal nanotubes , 2011 .

[4]  Nripan Mathews,et al.  Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability , 2012 .

[5]  Stacey F. Bent,et al.  A brief review of atomic layer deposition: from fundamentals to applications , 2014 .

[6]  Phl Peter Notten,et al.  CO3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition , 2012 .

[7]  Huaping Zhao,et al.  Self-supported carbon coated TiN nanotube arrays: innovative carbon coating leads to an improved cycling ability for supercapacitor applications , 2015 .

[8]  J. Hupp,et al.  Atomic Layer Deposition of Indium Tin Oxide Thin Films Using Nonhalogenated Precursors , 2008 .

[9]  J. Jeevarajan,et al.  Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings. , 2011, Nanoscale.

[10]  James S. Daubert,et al.  Effect of Meso- and Micro-Porosity in Carbon Electrodes on Atomic Layer Deposition of Pseudocapacitive V2O5 for High Performance Supercapacitors , 2015 .

[11]  Ib Chorkendorff,et al.  Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution , 2013 .

[12]  Yang Ren,et al.  Gallium Sulfide–Single‐Walled Carbon Nanotube Composites: High‐Performance Anodes for Lithium‐Ion Batteries , 2014 .

[13]  X. Lou,et al.  Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. , 2013, Angewandte Chemie.

[14]  Stacey F. Bent,et al.  Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. , 2015, Nanoscale.

[15]  R. Chang,et al.  Atomic layer deposition of metastable β-Fe₂O₃ via isomorphic epitaxy for photoassisted water oxidation. , 2014, ACS applied materials & interfaces.

[16]  A. Tok,et al.  Inverse opals coupled with nanowires as photoelectrochemical anode , 2012 .

[17]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[18]  M. Nazeeruddin,et al.  Passivation of ZnO Nanowire Guests and 3D Inverse Opal Host Photoanodes for Dye‐Sensitized Solar Cells , 2014 .

[19]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[20]  Xiangbo Meng,et al.  Atomic Layer Deposition of Gallium Sulfide Films Using Hexakis(dimethylamido)digallium and Hydrogen Sulfide , 2014 .

[21]  M. C. Wheeler,et al.  Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode , 2007 .

[22]  Mikko Ritala,et al.  Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends , 2013 .

[23]  Y. Lei,et al.  A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO 2 , 2014 .

[24]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[25]  G. Rubloff,et al.  Ozone-Based Atomic Layer Deposition of Crystalline V2O5 Films for High Performance Electrochemical Energy Storage , 2012 .

[26]  Gleb Yushin,et al.  Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes , 2012 .

[27]  T. Brousse,et al.  MnO2 Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with “Bulk” Carbon Electrodes , 2015 .

[28]  Liangbing Hu,et al.  Atomic-layer-deposition oxide nanoglue for sodium ion batteries. , 2014, Nano letters.

[29]  G. Rubloff,et al.  MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage. , 2011, Physical chemistry chemical physics : PCCP.

[30]  Shahriar Shafiee,et al.  When will fossil fuel reserves be diminished , 2009 .

[31]  Jin-Young Jung,et al.  Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution , 2014 .

[32]  Omar K Farha,et al.  Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition. , 2015, ACS nano.

[33]  T. Sajavaara,et al.  Atomic Layer Deposition of Spinel Lithium Manganese Oxide by Film-Body-Controlled Lithium Incorporation for Thin-Film Lithium-Ion Batteries , 2014 .

[34]  Huaping Zhao,et al.  Growth control of AgTCNQ nanowire arrays by using a template-assisted electro-deposition method , 2013 .

[35]  Liangbing Hu,et al.  Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2 lithium-ion battery electrodes through a RuO2 atomic layer deposition process. , 2015, ACS nano.

[36]  H. Alshareef,et al.  Surface Passivation of MoO₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes. , 2015, ACS applied materials & interfaces.

[37]  M. Biener,et al.  Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. , 2015, ACS nano.

[38]  Wilson A. Smith,et al.  Extracting large photovoltages from a-SiC photocathodes with an amorphous TiO2 front surface field layer for solar hydrogen evolution , 2015 .

[39]  Epitaxial Atomic Layer Deposition of Sn-Doped Indium Oxide , 2016 .

[40]  M. Knez,et al.  Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes , 2007 .

[41]  R. Puurunen A Short History of Atomic Layer Deposition: Tuomo Suntola's Atomic Layer Epitaxy , 2014 .

[42]  Ningyi Yuan,et al.  The effect of ALD-Zno layers on the formation of CH₃NH₃PbI₃ with different perovskite precursors and sintering temperatures. , 2014, Chemical communications.

[43]  M. Ko,et al.  Effect of the thickness of the Ru-coating on a counter electrode on the performance of a dye-sensitized solar cell , 2012, Metals and Materials International.

[44]  Yu-Lun Chueh,et al.  p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. , 2012, Angewandte Chemie.

[45]  T. Baumann,et al.  Mechanisms of atomic layer deposition on substrates with ultrahigh aspect ratios. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[46]  Tae-Joon Kim,et al.  Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell. , 2001, Angewandte Chemie.

[47]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[48]  H. Baumgart,et al.  Atomic Layer Deposition of ZrO2 and HfO2 Nanotubes by Template Replication , 2009 .

[49]  Matthew R. Shaner,et al.  Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2 , 2015 .

[50]  Y. Jung,et al.  Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries , 2015 .

[51]  S. Sarkar,et al.  Atomic layer deposition of NiS and its application as cathode material in dye sensitized solar cell , 2016 .

[52]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[53]  Mariah D. Woodroof,et al.  Atomic layer deposition of high performance ultrathin TiO₂ blocking layers for dye-sensitized solar cells. , 2013, ChemSusChem.

[54]  Qing Zhang,et al.  Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode , 2015, Nanotechnology.

[55]  X. Sun,et al.  Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition , 2015, Nanotechnology.

[56]  Y. Lei,et al.  Constructing a AZO/TiO2 Core/Shell Nanocone Array with Uniformly Dispersed Au NPs for Enhancing Photoelectrochemical Water Splitting , 2016 .

[57]  S. Bent,et al.  Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. , 2011, Nanoscale.

[58]  A. Pearse,et al.  Atomic Layer Deposition of the Solid Electrolyte LiPON , 2015 .

[59]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[60]  Tina C. Li,et al.  Surface passivation of nanoporous TiO 2 via atomic layer deposition of ZrO 2 for solid-state dye-sensitized solar cell applications , 2009 .

[61]  Nathan S. Lewis,et al.  A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films , 2015 .

[62]  Yuhai Hu,et al.  Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition , 2014 .

[63]  Hua Zhang,et al.  Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. , 2015, ACS nano.

[64]  Steven M. George,et al.  Improved Functionality of Lithium‐Ion Batteries Enabled by Atomic Layer Deposition on the Porous Microstructure of Polymer Separators and Coating Electrodes , 2012 .

[65]  H. Pettersson,et al.  Dye-sensitized solar cells. , 2010, Chemical Reviews.

[66]  M. Grätzel,et al.  Transparent, conducting Nb:SnO2 for host-guest photoelectrochemistry. , 2012, Nano letters.

[67]  J. Hupp,et al.  Fast transporting ZnO-TiO2 coaxial photoanodes for dye-sensitized solar cells based on ALD-modified SiO2 aerogel frameworks. , 2012, ACS nano.

[68]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[69]  M. Zacharias,et al.  Atomic-layer-deposition alumina induced carbon on porous NixCo1 − xO nanonets for enhanced pseudocapacitive and Li-ion storage performance , 2015, Nanotechnology.

[70]  Huaping Zhao,et al.  Highly Ordered Three-Dimensional Ni-TiO2 Nanoarrays as Sodium Ion Battery Anodes , 2015 .

[71]  Y. Lei,et al.  Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors , 2014 .

[72]  K. Ziegler,et al.  Improving Performance via Blocking Layers in Dye-Sensitized Solar Cells Based on Nanowire Photoanodes. , 2015, ACS applied materials & interfaces.

[73]  Yang Xu,et al.  Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. , 2015, Angewandte Chemie.

[74]  Thomas W. Hamann,et al.  Highly photoactive Ti-doped α-Fe2O3 thin film electrodes: resurrection of the dead layer , 2013 .

[75]  James L. Young,et al.  Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. , 2016, Nature materials.

[76]  Qian Sun,et al.  Rational Design of Atomic‐Layer‐Deposited LiFePO4 as a High‐Performance Cathode for Lithium‐Ion Batteries , 2014, Advanced materials.

[77]  Joseph T Hupp,et al.  ZnO nanotube based dye-sensitized solar cells. , 2007, Nano letters.

[78]  R. Li,et al.  Atomic Layer Deposition of Lithium Tantalate Solid-State Electrolytes , 2013 .

[79]  H. Alshareef,et al.  Highly Stable Supercapacitors with Conducting Polymer Core‐Shell Electrodes for Energy Storage Applications , 2015 .

[80]  Hao Shen,et al.  Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. , 2007, Journal of the American Chemical Society.

[81]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[82]  Marc-Olivier Coppens,et al.  Knudsen self- and Fickian diffusion in rough nanoporous media , 2003 .

[83]  Chunsheng Wang,et al.  Self-assembled Ni/TiO2 nanocomposite anodes synthesized via electroless plating and atomic layer deposition on biological scaffolds. , 2010, Chemical communications.

[84]  T. Lu,et al.  The Differences in Optical Characteristics of TiO2 and TiO2/AAO Nanotube Arrays Fabricated by Atomic Layer Deposition , 2012 .

[85]  Po-Hsun Chen,et al.  Toward highly efficient photocatalysis: a flow-through Pt@TiO₂@AAO membrane nanoreactor prepared by atomic layer deposition. , 2014, Chemical communications.

[86]  Bruno Scrosati,et al.  The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li‐Enriched Nickel‐Manganese Oxide Electrodes for Li‐Ion Batteries , 2012, Advanced materials.

[87]  M. Grätzel,et al.  Evaluating the Critical Thickness of TiO2 Layer on Insulating Mesoporous Templates for Efficient Current Collection in Dye‐Sensitized Solar Cells , 2013 .

[88]  Y. Lei,et al.  Dimensional Dependence of the Optical Absorption Band Edge of TiO2 Nanotube Arrays beyond the Quantum Effect , 2015 .

[89]  Sailing He,et al.  Kinetics of Stop-Flow Atomic Layer Deposition for High Aspect Ratio Template Filling through Photonic Band Gap Measurements , 2010 .

[90]  Chun Xing Li,et al.  Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. , 2014, ACS applied materials & interfaces.

[91]  Phl Peter Notten,et al.  Atomic layer deposition for nanostructured Li-ion batteries , 2012 .

[92]  Hua Zhang,et al.  Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application. , 2014, Small.

[93]  Yong Lei,et al.  Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion , 2015 .

[94]  Juan Bisquert,et al.  Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes , 2012 .

[95]  N. Lewis,et al.  Stabilization of n-cadmium telluride photoanodes for water oxidation to O2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition , 2014 .

[96]  Jingshan Luo,et al.  A Novel Photoanode with Three‐Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells , 2012, Advanced materials.

[97]  Huaping Zhao,et al.  Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: application for high performance supercapacitor. , 2014, Small.

[98]  M. Grätzel,et al.  The Role of Insulating Oxides in Blocking the Charge Carrier Recombination in Dye‐Sensitized Solar Cells , 2014 .

[99]  Yongjing Lin,et al.  Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting. , 2012, Journal of the American Chemical Society.

[100]  C. Yuan,et al.  Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells. , 2013, Nanoscale.

[101]  David Galipeau,et al.  Effect of atomic layer deposited ultra thin HfO2 and Al2O3 interfacial layers on the performance of dye sensitized solar cells , 2010 .

[102]  Yang Xu,et al.  Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. , 2014, ACS nano.

[103]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[104]  R. Li,et al.  Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage , 2012 .

[105]  N. Dasgupta,et al.  Recent Advances in Atomic Layer Deposition , 2016 .

[106]  A. Nakajima,et al.  Self-limiting atomic-layer deposition of Si on SiO2 by alternate supply of Si2H6 and SiCl4 , 2001 .

[107]  Paul C. McIntyre,et al.  Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes , 2013 .

[108]  Xiulin Fan,et al.  Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries , 2015 .

[109]  Yanfa Yan,et al.  Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. , 2011, Nano letters.

[110]  Jonathan J. Travis,et al.  Pseudocapacitance of Amorphous TiO2 Thin Films Anchored to Graphene and Carbon Nanotubes Using Atomic Layer Deposition , 2013 .

[111]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[112]  Yan Sun,et al.  Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode , 2013 .

[113]  Alex B. F. Martinson,et al.  Atomic layer deposition of TiO2 on aerogel templates: New photoanodes for dye-sensitized solar cells , 2008 .

[114]  Honghong Cheng,et al.  Enhanced Cycleabity in Lithium Ion Batteries: Resulting from Atomic Layer Depostion of Al2O3 or TiO2 on LiCoO2 Electrodes , 2012 .

[115]  S. Jung,et al.  Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion. , 2014, Nano letters.

[116]  Amit Thapa,et al.  TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells , 2014, Nano Research.

[117]  B. Parkinson,et al.  Templated homoepitaxial growth with atomic layer deposition of single-crystal anatase (101) and rutile (110) TiO2. , 2014, ACS applied materials & interfaces.

[118]  S. Kim,et al.  Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. , 2009, ACS nano.

[119]  M. Grätzel,et al.  Low-temperature crystalline titanium dioxide by atomic layer deposition for dye-sensitized solar cells. , 2013, ACS applied materials & interfaces.

[120]  J. Durrant,et al.  The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. , 2005, The journal of physical chemistry. B.

[121]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[122]  Jun Guo,et al.  Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells , 2015, Scientific Reports.

[123]  Qian Sun,et al.  Unravelling the Role of Electrochemically Active FePO4 Coating by Atomic Layer Deposition for Increased High‐Voltage Stability of LiNi0.5Mn1.5O4 Cathode Material , 2015, Advanced science.

[124]  T. Sajavaara,et al.  Atomic layer deposition of LixTiyOz thin films , 2013 .

[125]  Wmm Erwin Kessels,et al.  Atomic Layer Deposition of LiCoO2 Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries , 2013 .

[126]  S. Kim,et al.  Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors. , 2015, ACS applied materials & interfaces.

[127]  J. Elam,et al.  Low temperature atomic layer deposition of highly photoactive hematite using iron(III) chloride and water , 2013 .

[128]  J. Demšar,et al.  Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications , 2016, Nature Communications.

[129]  Song-Yeu Tsai,et al.  Enhanced performance of dye-sensitized solar cells by an Al2O3 charge-recombination barrier formed by low-temperature atomic layer deposition , 2009 .

[130]  Steven M. George,et al.  Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition , 2003 .

[131]  J. Holopainen,et al.  Study of amorphous lithium silicate thin films grown by atomic layer deposition , 2012 .

[132]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[133]  Junmei Zhao,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[134]  H. Fjellvåg,et al.  High-performing iron phosphate for enhanced lithium ion solid state batteries as grown by atomic layer deposition , 2013 .

[135]  Sarmimala Hore,et al.  How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells? , 2005, The journal of physical chemistry. B.

[136]  Li Li,et al.  Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD , 2013 .

[137]  T. Aaltonen,et al.  Atomic Layer Deposition of Li2O–Al2O3 Thin Films , 2011 .

[138]  Yongjing Lin,et al.  Nanonet-based hematite heteronanostructures for efficient solar water splitting. , 2011, Journal of the American Chemical Society.

[139]  J. Hupp,et al.  Radial electron collection in dye-sensitized solar cells. , 2008, Nano letters.

[140]  K. Kukli,et al.  Atomic Layer Deposition of Iron Oxide Thin Films and Nanotubes using Ferrocene and Oxygen as Precursors , 2008 .

[141]  Hyun Suk Jung,et al.  Highly efficient and bending durable perovskite solar cells: toward a wearable power source , 2015 .

[142]  David J. Mandia,et al.  Atomic Layer Deposition of Gold Metal , 2016 .

[143]  Xiao‐Qing Yang,et al.  Emerging Applications of Atomic Layer Deposition for Lithium‐Ion Battery Studies , 2012, Advanced materials.

[144]  M. Nisula,et al.  Atomic Layer Deposition of Lithium Phosphorus Oxynitride , 2015 .

[145]  Miao Zhong,et al.  Surface Modification of CoO(x) Loaded BiVO₄ Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. , 2015, Journal of the American Chemical Society.

[146]  Nicola Pinna,et al.  Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications , 2012, Advanced materials.

[147]  J. Flake,et al.  Low temperature preparation of crystalline ZrO2 coatings for improved elevated-temperature performances of Li-ion battery cathodes. , 2012, Chemical communications.

[148]  C. Black,et al.  Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells , 2013 .

[149]  R. Li,et al.  Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes , 2013 .

[150]  M. Grätzel,et al.  A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting. , 2012, Faraday discussions.

[151]  Juan Bisquert,et al.  Water oxidation at hematite photoelectrodes: the role of surface states. , 2012, Journal of the American Chemical Society.

[152]  Wei Chen,et al.  SnO2 anode surface passivation by atomic layer deposited HfO2 improves Li-ion battery performance. , 2014, Small.

[153]  Selective growth and piezoelectric properties of highly ordered arrays of vertical ZnO nanowires on ultrathin alumina membranes , 2010 .

[154]  Wmm Erwin Kessels,et al.  On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3 , 2008 .

[155]  Yong Lei,et al.  Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries , 2015 .

[156]  Huaping Zhao,et al.  Manipulation of Disodium Rhodizonate: Factors for Fast‐Charge and Fast‐Discharge Sodium‐Ion Batteries with Long‐Term Cyclability , 2016 .

[157]  Esther Kim,et al.  A Kinetic Model for Step Coverage by Atomic Layer Deposition in Narrow Holes or Trenches , 2003 .

[158]  Sehee Lee,et al.  Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li‐Ion Batteries , 2010, Advanced materials.

[159]  Steven M. George,et al.  Effect of Al2O3 Coating on Stabilizing LiNi0.4Mn0.4Co0.2O2 Cathodes , 2015 .

[160]  L. Wong,et al.  Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. , 2015, ACS applied materials & interfaces.

[161]  Thomas W. Hamann,et al.  Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[162]  Seong‐Hyeon Hong,et al.  SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability. , 2013, Nanoscale.

[163]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[164]  M. Ritala,et al.  Atomic layer deposition of TiO2−xNx thin films for photocatalytic applications , 2006 .

[165]  Steven M. George,et al.  History of atomic layer deposition and its relationship with the American Vacuum Society , 2013 .

[166]  O. Hansen,et al.  Silicon protected with atomic layer deposited TiO2: conducting versus tunnelling through TiO2 , 2013 .

[167]  Sehee Lee,et al.  Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies. , 2011, Journal of the American Chemical Society.

[168]  Post-assembly atomic layer deposition of ultrathin metal-oxide coatings enhances the performance of an organic dye-sensitized solar cell by suppressing dye aggregation. , 2015, ACS applied materials & interfaces.

[169]  Reza Ghodssi,et al.  Hierarchical three-dimensional microbattery electrodes combining bottom-up self-assembly and top-down micromachining. , 2012, ACS nano.

[170]  Yu Cao,et al.  Enhancement in photoluminescence performance of carbon-decorated T-ZnO , 2015, Nanotechnology.

[171]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[172]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[173]  Peng Lu,et al.  Unexpected Improved Performance of ALD Coated LiCoO2/Graphite Li‐Ion Batteries , 2013 .

[174]  Liwei Lin,et al.  Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications , 2015 .

[175]  S. Y. Chiam,et al.  Low temperature processing solid-state dye sensitized solar cells , 2012 .

[176]  Shuhong Yu,et al.  Designing Heterogeneous 1D Nanostructure Arrays Based on AAO Templates for Energy Applications. , 2015, Small.

[177]  Dunwei Wang,et al.  Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. , 2012, Journal of the American Chemical Society.

[178]  Jian Shi,et al.  Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition. , 2013, Nano letters.

[179]  Yong Lei,et al.  Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[180]  Stefan Vajda,et al.  Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. , 2013, ACS nano.

[181]  Dezhi Kong,et al.  A three-dimensional hierarchical TiO2 urchin as a photoelectrochemical anode with omnidirectional anti-reflectance properties. , 2014, Physical chemistry chemical physics : PCCP.

[182]  Xueliang Sun,et al.  Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application , 2014 .

[183]  N. Pinna,et al.  Highly ordered and vertically oriented TiO2/Al2O3 nanotube electrodes for application in dye-sensitized solar cells , 2014, Nanotechnology.

[184]  G. Cao,et al.  Effect of Annealing Temperature on TiO2−ZnO Core−Shell Aggregate Photoelectrodes of Dye-Sensitized Solar Cells , 2011 .

[185]  Y. Lei,et al.  Synchronous Formation of ZnO/ZnS Core/Shell Nanotube Arrays with Removal of Template for Meliorating Photoelectronic Performance , 2015 .

[186]  V. Kale,et al.  Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries , 2013 .

[187]  S. George,et al.  Synthesis of ZnO quantum dot/graphene nanocomposites by atomic layer deposition with high lithium storage capacity , 2014 .

[188]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[189]  S. Tolbert,et al.  Tungsten Nitride Inverse Opals by Atomic Layer Deposition , 2003 .

[190]  Tuo Wang,et al.  Transparent ALD-grown Ta2O5 protective layer for highly stable ZnO photoelectrode in solar water splitting. , 2015, Chemical communications.

[191]  Changli Li,et al.  Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer , 2015 .

[192]  Michael Grätzel,et al.  Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting. , 2015, ACS nano.

[193]  Xiqian Yu,et al.  Alumina‐Coated Patterned Amorphous Silicon as the Anode for a Lithium‐Ion Battery with High Coulombic Efficiency , 2011, Advanced materials.

[194]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[195]  Thomas W. Hamann,et al.  Aerogel Templated ZnO Dye‐Sensitized Solar Cells , 2008 .

[196]  D. Mitlin,et al.  Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance , 2013 .

[197]  R. Li,et al.  Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition , 2011 .

[198]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[199]  M. Hersam,et al.  Tuning the Composition and Nanostructure of Pt/Ir Films via Anodized Aluminum Oxide Templated Atomic Layer Deposition , 2010 .

[200]  Jonathan J. Travis,et al.  Atomic Layer Deposition of TiO2 on Graphene for Supercapacitors , 2012 .

[201]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[202]  G. Cao,et al.  Effect of an Ultrathin TiO2 Layer Coated on Submicrometer‐Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye‐Sensitized Solar Cells , 2010, Advanced materials.

[203]  A. Tok,et al.  TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications , 2011 .

[204]  Sang Bok Lee,et al.  An all-in-one nanopore battery array. , 2014, Nature nanotechnology.

[205]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[206]  C. Detavernier,et al.  Tailoring nanoporous materials by atomic layer deposition. , 2011, Chemical Society reviews.

[207]  H. Fjellvåg,et al.  Atomic layer deposition of functional films for Li‐ion microbatteries , 2014 .

[208]  Jaegab Lee,et al.  Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness , 2004 .

[209]  Fan Zhang,et al.  Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. , 2011, Angewandte Chemie.

[210]  Minghong Wu,et al.  Ultrathin alumina membranes for surface nanopatterning in fabricating quantum-sized nanodots. , 2010, Small.

[211]  Sang Bok Lee,et al.  Nanotubular metal-insulator-metal capacitor arrays for energy storage. , 2009, Nature nanotechnology.

[212]  N. Lewis,et al.  The influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation. , 2015, ACS Applied Materials and Interfaces.

[213]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[214]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[215]  M. Grätzel,et al.  Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst , 2015 .

[216]  C. Battaglia,et al.  Role of TiO2 Surface Passivation on Improving the Performance of p-InP Photocathodes , 2015 .

[217]  P. Lund,et al.  Dye Solar Cells on ITO-PET Substrate with TiO2 Recombination Blocking Layers , 2009 .

[218]  Eric T. Hoke,et al.  The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[219]  Stafford W. Sheehan,et al.  TiO(2)/TiSi(2) heterostructures for high-efficiency photoelectrochemical H(2)O splitting. , 2009, Journal of the American Chemical Society.

[220]  Peng Zhang,et al.  Photoelectrochemical Hydrogen Production of TiO2 Passivated Pt/Si-Nanowire Composite Photocathode. , 2015, ACS applied materials & interfaces.

[221]  Kun Zhang,et al.  Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells , 2014 .

[222]  Michael Grätzel,et al.  Passivating surface states on water splitting hematite photoanodes with alumina overlayers , 2011 .

[223]  Y. Lei,et al.  Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently , 2016 .

[224]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[225]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[226]  H. Jung,et al.  Tin doped indium oxide core—TiO2 shell nanowires on stainless steel mesh for flexible photoelectrochemical cells , 2012 .

[227]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[228]  C. F. Ng,et al.  Three-dimensional graphene foam supported Fe₃O₄ lithium battery anodes with long cycle life and high rate capability. , 2013, Nano letters.

[229]  M. Grätzel,et al.  Understanding the Role of Underlayers and Overlayers in Thin Film Hematite Photoanodes , 2014 .

[230]  G. Ozin,et al.  High-efficiency dye-sensitized solar cell with three-dimensional photoanode. , 2011, Nano letters.

[231]  S. George,et al.  Rotary reactor for atomic layer deposition on large quantities of nanoparticles , 2007 .

[232]  J. Glass,et al.  Solution-processed, antimony-doped tin oxide colloid films enable high-performance TiO2 photoanodes for water splitting. , 2013, Nano letters.

[233]  James A. Dumesic,et al.  Catalyst Design with Atomic Layer Deposition , 2015 .

[234]  D. Mitlin,et al.  Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes , 2014 .

[235]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[236]  Xiaogang Yang,et al.  Hematite-based water splitting with low turn-on voltages. , 2013, Angewandte Chemie.

[237]  B. Polzin,et al.  Functioning Mechanism of AlF3 Coating on the Li- and Mn-Rich Cathode Materials , 2014 .

[238]  T. Baumann,et al.  Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths , 2005 .

[239]  Phl Peter Notten,et al.  Remote Plasma Atomic Layer Deposition of Thin Films of Electrochemically Active LiCoO2 , 2011 .

[240]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[241]  Alan W. Weimer,et al.  Atomic layer deposition on particles using a fluidized bed reactor with in situ mass spectrometry , 2007 .

[242]  V. Zardetto,et al.  Atomic Layer Deposition of Highly Transparent Platinum Counter Electrodes for Metal/Polymer Flexible Dye‐Sensitized Solar Cells , 2014 .

[243]  R. Liu,et al.  Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. , 2014, ACS applied materials & interfaces.

[244]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[245]  Chih-Chieh Wang,et al.  Fabrication of TiO2 nanotubes by atomic layer deposition and their photocatalytic and photoelectrochemical applications , 2011, Nanotechnology.

[246]  Xinwei Wang,et al.  Vapor-Phase Atomic Layer Deposition of Co9S8 and Its Application for Supercapacitors. , 2015, Nano letters.

[247]  N. Lewis,et al.  Photoelectrochemical Behavior of n‑type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition , 2013 .

[248]  Xingcheng Xiao,et al.  Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries , 2011, Advanced materials.

[249]  Zhiyuan Zeng,et al.  Hollow core–shell nanostructure supercapacitor electrodes: gap matters , 2012 .

[250]  A. J. Frank,et al.  In2S3 Atomic Layer Deposition and Its Application as a Sensitizer on TiO2 Nanotube Arrays for Solar Energy Conversion , 2010 .

[251]  J. Croy,et al.  Amorphous Metal Fluoride Passivation Coatings Prepared by Atomic Layer Deposition on LiCoO2 for Li-Ion Batteries , 2015 .

[252]  C. Rao,et al.  Atomic Layer Deposition of p-Type Epitaxial Thin Films of Undoped and N-Doped Anatase TiO2. , 2016, ACS applied materials & interfaces.

[253]  Ying Wang,et al.  Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation , 2006 .

[254]  Gi‐Heon Kim,et al.  Fe3O4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium‐Ion Batteries , 2011 .

[255]  A. Tok,et al.  Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. , 2012, Small.

[256]  J. L. Delgado,et al.  Understanding the Outstanding Power Conversion Efficiency of Perovskite-Based Solar Cells. , 2015, Angewandte Chemie.

[257]  Liang Li,et al.  Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells , 2015 .

[258]  Qian Sun,et al.  Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries , 2014, Nanotechnology.

[259]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[260]  K. Amine,et al.  Atomic to Nanoscale Investigation of Functionalities of an Al2O3 Coating Layer on a Cathode for Enhanced Battery Performance , 2016 .

[261]  G. Parsons,et al.  Atomic layer deposition of TiO2 on mesoporous nanoITO: conductive core-shell photoanodes for dye-sensitized solar cells. , 2014, Nano letters.

[262]  Joseph T. Hupp,et al.  Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: Significant improvements in photovoltage via Al2O3 atomic layer deposition , 2010 .

[263]  C. Detavernier,et al.  Deposition of MnO Anode and MnO2 Cathode Thin Films by Plasma Enhanced Atomic Layer Deposition Using the Mn(thd)3 Precursor , 2015 .

[264]  D. Garcia-Alonso,et al.  Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing , 2012 .

[265]  M. Ko,et al.  Highly uniform and vertically aligned SnO2 nanochannel arrays for photovoltaic applications. , 2015, Nanoscale.

[266]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .