Optical and electrical properties of high-quality Ti2O3 epitaxial film grown on sapphire substrate

Abstract Epitaxial film of Ti2O3 with high crystalline quality was grown on Al2O3 substrate by pulsed laser deposition process using a powder-pressed TiO2 target in active O2 flow. X-ray diffraction clearly reveals the (0006) crystalline Ti2O3 orientation and its $$ (10\overline{1} 0)_{{{\text{Ti}}_{ 2} {\text{O}}_{ 3} }} ||(10\overline{1} 0)_{\text{sapphire}} $$(101¯0)Ti2O3||(101¯0)sapphire in-plane epitaxial relationship with the substrate. Scanning electron microscopy images show that the film grew uniformly on the substrate with a Volmer–Weber mode. High-resolution transmission electron microscopy and selected area electron diffraction further confirm the high crystalline quality of the film. Transmittance spectrum shows that the Ti2O3 film is highly transparent in 400–800 nm with the optical band gap estimated to be 3.53 eV by Tauc plot. The temperature-dependent Hall effect measurement indicates that the Ti2O3 film appears to be n-type semiconductor with carrier concentration, mobility, and resistivity showing typical temperature-dependent behavior. The donor ionization energy was estimated to be 83.6 meV by linear relationship of conductivity versus temperature.

[1]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[2]  J. R. Botha,et al.  Temperature-dependent Hall effect studies of ZnO thin films grown by metalorganic chemical vapour deposition , 2008 .

[3]  V. Walle,et al.  Hydrogen as a cause of doping in zinc oxide , 2000 .

[4]  S. V. Ovsyannikov,et al.  Pressure-temperature phase diagram of Ti2O3and physical properties in the golden Th2S3-type phase , 2012 .

[5]  R. Merlin,et al.  Growth of amorphous Ti 20 3 layers by laser-induced oxidation , 1984 .

[6]  K. Giannakopoulos,et al.  Porous hot-wire deposited WO3 films with high optical transmission , 2011 .

[7]  S. E. Harrison Conductivity and Hall Effect of ZnO at Low Temperatures , 1954 .

[8]  Anomalous state sandwiched between Fermi liquid and charge ordered Mott-insulating phases of Ti4O7. , 2009, Physical review letters.

[9]  T. Akiyama,et al.  Latent Property of Defect-Controlled Metal Oxide: Nonstoichiometric Titanium Oxides as Prospective Material for High-Temperature Thermoelectric Conversion , 2006 .

[10]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[11]  S. Andersson,et al.  PHASE ANALYSIS STUDIES ON THE TITANIUM-OXYGEN SYSTEM , 1957 .

[12]  Benjamin J. Morgan,et al.  Intrinsic n-type Defect Formation in TiO2: A Comparison of Rutile and Anatase from GGA+U Calculations , 2010 .

[13]  Junpeng Wang,et al.  Self-doped TiO 2-x nanowires with enhanced photocatalytic activity: Facile synthesis and effects of the Ti 3+ , 2015 .

[14]  J. Takada,et al.  Characteristics of titanium oxide films deposited by an activated reactive evaporation method , 1994 .

[15]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[16]  S. Pennycook,et al.  Domain epitaxy in TiO2/α-Al2O3 thin film heterostructures with Ti2O3 transient layer , 2012 .

[17]  A. Fujishima,et al.  Photocatalytic Activity and Photo-Induced Wettability Conversion of TiO2 Thin Film Prepared by Sol-Gel Process on a Soda-Lime Glass , 2000 .

[18]  J. H. Van Der Merwe,et al.  Crystal Interfaces. Part II. Finite Overgrowths , 1963 .

[19]  M. Fadel,et al.  Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films , 2006 .

[20]  Russell Binions,et al.  Solid State Thermochromic Materials , 2010 .

[21]  Doo Jin Choi,et al.  Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties , 2001 .

[22]  Lide Zhang,et al.  Semiconductor-metal transition of titanium sesquioxide nanopowder , 2012 .

[23]  P. Kotula,et al.  The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films , 2001 .

[24]  W. R. Robinson,et al.  High‐temperature crystal chemistry of Ti2O3: structural changes accompanying the semiconductor–metal transition , 1977 .

[25]  E. Chinarro,et al.  Physico-chemical properties of the Ti5O9 Magneli phase with potential application as a neural stimulation electrode. , 2013, Journal of materials chemistry. B.

[26]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[27]  L. Feldman,et al.  Size-dependent optical properties of VO2 nanoparticle arrays. , 2004, Physical review letters.

[28]  S. Pennock,et al.  Manufacturing and characterization of Magnéli phase conductive fibres , 2014 .

[29]  Gang Chen,et al.  Thermoelectric property studies on bulk TiOx with x from 1 to 2 , 2007 .

[30]  R. F. Bartholomew,et al.  Electrical Properties of Some Titanium Oxides , 1969 .

[31]  J. W. Matthews,et al.  Accommodation of Misfit Across the Interface Between Crystals of Semiconducting Elements or Compounds , 1970 .

[32]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[33]  S. V. Ovsyannikov,et al.  High-pressure behavior of structural, optical, and electronic transport properties of the golden Th 2 S 3 -type Ti 2 O 3 , 2013 .

[34]  S. Shin,et al.  Thermoelectric Effects in Pure and V-Doped Ti 2 O 3 Single Crystals , 1973 .

[35]  R. J. Sladek,et al.  Elastic Constants and the Electrical Transition in Ti 2 O 3 , 1973 .

[36]  John B. Goodenough,et al.  Direct cation- -cation interactions in several oxides , 1960 .

[37]  Y. Kameshima,et al.  Hydrogen production by mechano-chemical reaction of Ti2O3 in water , 2013 .