Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries

Abstract The intercalation and aging induced volume changes of lithium-ion battery electrodes lead to significant mechanical pressure or volume changes on cell and module level. As the correlation between electrochemical and mechanical performance of lithium ion batteries at nano and macro scale requires a comprehensive and multidisciplinary approach, physical modeling accounting for chemical and mechanical phenomena during operation is very useful for the battery design. Since the introduced fully-coupled physical model requires proper parameterization, this work also focuses on identifying appropriate mathematical representation of compressibility as well as the ionic transport in the porous electrodes and the separator. The ionic transport is characterized by electrochemical impedance spectroscopy (EIS) using symmetric pouch cells comprising LiNi1/3Mn1/3Co1/3O2 (NMC) cathode, graphite anode and polyethylene separator. The EIS measurements are carried out at various mechanical loads. The observed decrease of the ionic conductivity reveals a significant transport limitation at high pressures. The experimentally obtained data are applied as input to the electrochemical-mechanical model of a prismatic 10 Ah cell. Our computational approach accounts intercalation induced electrode expansion, stress generation caused by mechanical boundaries, compression of the electrodes and the separator, outer expansion of the cell and finally the influence of the ionic transport within the electrolyte.

[1]  Craig B. Arnold,et al.  Stress evolution and capacity fade in constrained lithium-ion pouch cells , 2014 .

[2]  Kurt Maute,et al.  Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries , 2009 .

[3]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[4]  M. Verbrugge,et al.  The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles , 2008 .

[5]  Venkat R. Subramanian,et al.  Effect of Porosity, Thickness and Tortuosity on Capacity Fade of Anode , 2015 .

[6]  Y. Ukyo,et al.  Theoretical and Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy Using a Symmetric Cell , 2012 .

[7]  D. Sauer,et al.  Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery I. Determination of Parameters , 2015 .

[8]  Christoph Bauer,et al.  Sinusoidal current and stress evolutions in lithium-ion batteries , 2016 .

[9]  Martin Ebner,et al.  Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes , 2015 .

[10]  D. Billaud,et al.  Revisited structures of dense and dilute stage II lithium-graphite intercalation compounds , 1996 .

[11]  Parthasarathy M. Gomadam,et al.  Modeling Volume Changes in Porous Electrodes , 2006 .

[12]  Taylor R. Garrick,et al.  Modeling Volume Change in Dual Insertion Electrodes , 2017 .

[13]  Mehrdad Mastali,et al.  Electrochemical Modeling of Commercial LiFePO4 and Graphite Electrodes: Kinetic and Transport Properties and Their Temperature Dependence , 2016 .

[14]  Ralph E. White,et al.  Theoretical Analysis of Stresses in a Lithium Ion Cell , 2010 .

[15]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[16]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[17]  P. Novák,et al.  Dilatometric Investigations of Graphite Electrodes in Nonaqueous Lithium Battery Electrolytes , 2000 .

[18]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[19]  D. Sauer,et al.  Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery II. Model Validation , 2015 .

[20]  Craig B. Arnold,et al.  Ion transport restriction in mechanically strained separator membranes , 2013 .

[21]  W. Bessler,et al.  Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior , 2014 .

[22]  Chaoyang Wang,et al.  Modeling of lithium plating induced aging of lithium-ion batteries: Transition from linear to nonlinear aging , 2017 .

[23]  Song-Yul Choe,et al.  Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery , 2013 .

[24]  Xiaosong Huang,et al.  A multiphysics model for the in situ stress analysis of the separator in a lithium-ion battery cell , 2014 .

[25]  Marc Kamlah,et al.  Modeling crack growth during Li insertion in storage particles using a fracture phase field approach , 2016 .

[26]  Elham Sahraei,et al.  Deformation and failure characteristics of four types of lithium-ion battery separators , 2016 .

[27]  Toshiharu Tada,et al.  Design and characteristics of large-scale lithium ion battery , 1999 .

[28]  Martin Ebner,et al.  Validity of the Bruggeman relation for porous electrodes , 2013 .

[29]  T. Wierzbicki,et al.  Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells , 2013 .

[30]  K. Amine,et al.  Change of Conductivity with Salt Content, Solvent Composition, and Temperature for Electrolytes of LiPF6 in Ethylene Carbonate-Ethyl Methyl Carbonate , 2001 .

[31]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[32]  D. Stephenson,et al.  Direct Measurements of Effective Ionic Transport in Porous Li-Ion Electrodes , 2013 .

[33]  Jae-Hyun Lee,et al.  Battery dimensional changes occurring during charge/discharge cycles—thin rectangular lithium ion and polymer cells , 2003 .

[34]  Fuqian Yang Interaction between diffusion and chemical stresses , 2005 .

[35]  Simon F. Schuster,et al.  Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression , 2016 .

[36]  Mark W. Verbrugge,et al.  Stress and Strain-Energy Distributions within Diffusion-Controlled Insertion-Electrode Particles Subjected to Periodic Potential Excitations , 2009 .

[37]  Simon V. Erhard,et al.  Multi-scale investigation of thickness changes in a commercial pouch type lithium-ion battery , 2016 .

[38]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[39]  Sergiy Kalnaus,et al.  Mechanical behavior and failure mechanisms of Li-ion battery separators , 2017 .

[40]  Craig B. Arnold,et al.  A Model for the Behavior of Battery Separators in Compression at Different Strain/Charge Rates , 2014 .

[41]  Jun Xu,et al.  Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries , 2016 .

[42]  Taylor R. Garrick,et al.  Modeling Volume Change due to Intercalation into Porous Electrodes , 2014 .

[43]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[44]  S. C. Carniglia Construction of the tortuosity factor from porosimetry , 1986 .

[45]  J. Paulsen,et al.  Numerical simulation of porous networks in relation to battery electrodes and separators , 2003 .

[46]  Youngki Kim,et al.  A novel phenomenological multi-physics model of Li-ion battery cells , 2016 .

[47]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[48]  D. Wheeler,et al.  FIB/SEM-based calculation of tortuosity in a porous LiCoO2 cathode for a Li-ion battery , 2013 .

[49]  R. McMeeking,et al.  Modeling Crack Growth during Li Extraction in Storage Particles Using a Fracture Phase Field Approach , 2016 .

[50]  Sohel Anwar,et al.  Electrochemical model based charge optimization for lithium-ion batteries , 2016 .

[51]  Hubert A. Gasteiger,et al.  Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy , 2016 .

[52]  Sébastien Martinet,et al.  Lithium-ion batteries with high charge rate capacity: Influence of the porous separator , 2007 .

[53]  Ki-Yong Oh,et al.  A novel thermal swelling model for a rechargeable lithium-ion battery cell , 2016 .

[54]  Azadeh Sheidaei,et al.  Mechanical behavior of a battery separator in electrolyte solutions , 2011 .

[55]  Martin Ebner,et al.  Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .

[56]  D. Wheeler,et al.  A Combination of X‐Ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO2 Li‐Ion Battery Cathodes , 2014 .

[57]  T. Wierzbicki,et al.  Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity , 2012 .

[58]  Aleksey Vishnyakov,et al.  Swelling and softening of lithium-ion battery separators in electrolyte solvents , 2015 .

[59]  Simon V. Erhard,et al.  A New Method to Model the Thickness Change of a Commercial Pouch Cell during Discharge , 2016 .

[60]  Long Cai,et al.  Simulation and Analysis of Stress in a Li-Ion Battery with a Blended LiMn 2 O 4 and LiNi 0.8 Co 0.15 Al 0.05 O 2 Cathode , 2014 .

[61]  J. Barker,et al.  In-situ measurement of the thickness changes associated with cycling of prismatic lithium ion batteries based on LiMn2O4 and LiCoO2 , 1999 .

[62]  Tsuyoshi Sasaki,et al.  Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries , 2015 .

[63]  A. Bund,et al.  Reversible and irreversible dilation of lithium-ion battery electrodes investigated by in-situ dilatometry , 2017 .

[64]  Anna G. Stefanopoulou,et al.  Rate dependence of swelling in lithium-ion cells , 2014 .

[65]  Craig B. Arnold,et al.  Mechanical Properties of a Battery Separator under Compression and Tension , 2014 .

[66]  Simon V. Erhard,et al.  Multi-Dimensional Modeling of the Influence of Cell Design on Temperature, Displacement and Stress Inhomogeneity in Large-Format Lithium-Ion Cells , 2016 .

[67]  M. Behm,et al.  Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte , 2008 .

[68]  Gen Inoue,et al.  Numerical and experimental evaluation of the relationship between porous electrode structure and effective conductivity of ions and electrons in lithium-ion batteries , 2017 .

[69]  Shankar Mohan,et al.  A Phenomenological Model of Bulk Force in a Li-Ion Battery Pack and Its Application to State of Charge Estimation , 2014 .