Semiclassical Analysis for the Kramers–Fokker–Planck Equation
暂无分享,去创建一个
[1] M. Zworski. A remark on a paper of E. B. Davies , 2001 .
[2] F. Hérau,et al. Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .
[3] Maciej Zworski,et al. From quasimodes to resonances , 1998 .
[4] M. Zworski,et al. Resonance Expansions in Semi-Classical Propagation , 2001 .
[5] J. Sjöstrand. Geometric bounds on the density of resonances for semiclassical problems , 1990 .
[6] V. Kolokoltsov. Semiclassical Analysis for Diffusions and Stochastic Processes , 2000 .
[7] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[8] H. Risken. Fokker-Planck Equation , 1984 .
[9] Johannes Sjöstrand,et al. Parametrices for pseudodifferential operators with multiple characteristics , 1974 .
[10] E. Davies,et al. Pseudo–spectra, the harmonic oscillator and complex resonances , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] Spatially Inhomogenous. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems : The linear Fokker-Planck equation , 2004 .
[12] E. Davies. Semi-Classical States for Non-Self-Adjoint Schrödinger Operators , 1998, math/9803129.
[13] Michael E. Taylor,et al. The Analysis of Linear Partial Differential Operators, Vols I & II. , 1985 .
[14] F. Nier,et al. Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .
[15] M. Zworski,et al. Pseudospectra of semiclassical (pseudo‐) differential operators , 2004 .
[16] H. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .
[18] Lloyd N. Trefethen,et al. Pseudospectra of Linear Operators , 1997, SIAM Rev..
[19] Boundary spectral behaviour for semiclassical operators in one dimension , 2004, math/0401288.
[20] L. Hörmander. The analysis of linear partial differential operators , 1990 .