Semiclassical Analysis for the Kramers–Fokker–Planck Equation

ABSTRACT On étudie des estimations semiclassiques sur la résolvente d'opérateurs qui ne sont ni elliptiques ni autoadjoints, que l'on utilise pour étudier le problème de Cauchy. En particulier on obtient une description précise du spectre pres de l'axe imaginaire, et des estimations de résolvente à l'intérieur du pseudo-spectre. On applique ensuite les résultats à l'opérateur de Kramers–Fokker–Planck. We study some accurate semiclassical resolvent estimates for operators that are neither selfadjoint nor elliptic, and applications to the Cauchy problem. In particular we get a precise description of the spectrum near the imaginary axis and precise resolvent estimates inside the pseudo-spectrum. We apply our results to the Kramers–Fokker–Planck operator.

[1]  M. Zworski A remark on a paper of E. B. Davies , 2001 .

[2]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[3]  Maciej Zworski,et al.  From quasimodes to resonances , 1998 .

[4]  M. Zworski,et al.  Resonance Expansions in Semi-Classical Propagation , 2001 .

[5]  J. Sjöstrand Geometric bounds on the density of resonances for semiclassical problems , 1990 .

[6]  V. Kolokoltsov Semiclassical Analysis for Diffusions and Stochastic Processes , 2000 .

[7]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[8]  H. Risken Fokker-Planck Equation , 1984 .

[9]  Johannes Sjöstrand,et al.  Parametrices for pseudodifferential operators with multiple characteristics , 1974 .

[10]  E. Davies,et al.  Pseudo–spectra, the harmonic oscillator and complex resonances , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Spatially Inhomogenous On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems : The linear Fokker-Planck equation , 2004 .

[12]  E. Davies Semi-Classical States for Non-Self-Adjoint Schrödinger Operators , 1998, math/9803129.

[13]  Michael E. Taylor,et al.  The Analysis of Linear Partial Differential Operators, Vols I & II. , 1985 .

[14]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[15]  M. Zworski,et al.  Pseudospectra of semiclassical (pseudo‐) differential operators , 2004 .

[16]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[18]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[19]  Boundary spectral behaviour for semiclassical operators in one dimension , 2004, math/0401288.

[20]  L. Hörmander The analysis of linear partial differential operators , 1990 .