New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators

Bacteria use small signal molecules, referred to as autoinducers, in order to monitor their population density and coordinate gene expression in a process named quorum sensing. In Gram-negative bacteria, acylated homoserine lactones are the most common autoinducer used for cell-to-cell communication. Increasing evidence that many different functions are controlled by acylated homoserine lactone quorum sensing has stimulated intensive investigations into the physiology, molecular biology and biochemistry that underlie this process. Here we review our current understanding of the molecular mechanisms used by the transcriptional regulators responsive to acylated homoserine lactone autoinducers to control gene expression and the structural modifications induced by acylated homoserine lactones binding specifically on these regulators.

[1]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs , 1996, Journal of bacteriology.

[2]  E. Greenberg,et al.  Intragenic suppression of a luxR mutation: Characterization of an autoinducer-independent LuxR , 1995 .

[3]  Yinping Qin,et al.  Quorum‐sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm , 2000, The EMBO journal.

[4]  F. O'Gara,et al.  The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. , 2000, Microbiology.

[5]  M. Cámara,et al.  The LuxM Homologue VanM from Vibrio anguillarumDirects the Synthesis of N-(3-Hydroxyhexanoyl)homoserine Lactone and N-Hexanoylhomoserine Lactone , 2001, Journal of bacteriology.

[6]  E. Greenberg,et al.  The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A. Ishihama,et al.  Involvement of region 4 of the sigma70 subunit of RNA polymerase in transcriptional activation of the lux operon during quorum sensing. , 2003, FEMS microbiology letters.

[8]  D. Coplin,et al.  A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  E. P. Greenberg,et al.  Reversible Acyl-Homoserine Lactone Binding to Purified Vibrio fischeri LuxR Protein , 2004, Journal of bacteriology.

[10]  B. Iglewski,et al.  Functional analysis of the Pseudomonas aeruginosa autoinducer PAI , 1996, Journal of bacteriology.

[11]  R. Cortese,et al.  The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA , 2002, The EMBO journal.

[12]  B. Bassler,et al.  Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway , 1994, Molecular microbiology.

[13]  P. Dunlap,et al.  AinS and a new family of autoinducer synthesis proteins , 1995, Journal of bacteriology.

[14]  E. Greenberg,et al.  Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  B. Iglewski,et al.  FunctionalDomains of the RhlR Transcriptional Regulator ofPseudomonasaeruginosa , 2003, Journal of bacteriology.

[16]  E. P. Greenberg,et al.  Quorum Sensing in Vibrio fischeri: Analysis of the LuxR DNA Binding Region by Alanine-Scanning Mutagenesis , 2001, Journal of bacteriology.

[17]  H. Suga,et al.  Stereoisomers of P. aeruginosa autoinducer analog to probe the regulator binding site. , 2006, Chemistry & biology.

[18]  T. B. Rasmussen,et al.  Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. , 2005, Organic & biomolecular chemistry.

[19]  S. C. Winans,et al.  Site‐directed mutagenesis of a LuxR‐type quorum‐sensing transcription factor: alteration of autoinducer specificity , 2003, Molecular microbiology.

[20]  T. Minogue,et al.  Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  E. Greenberg,et al.  Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. , 2001, Annual review of genetics.

[22]  T. Minogue,et al.  The cell density‐dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR‐mediated repression of the rcsA gene , 2005, Molecular microbiology.

[23]  M. Churchill,et al.  Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. , 2002, Molecular cell.

[24]  New synthetic analogues of N-acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. , 2002, Bioorganic & medicinal chemistry letters.

[25]  John W. Beaber,et al.  Analogs of the Autoinducer 3-Oxooctanoyl-Homoserine Lactone Strongly Inhibit Activity of the TraR Protein ofAgrobacterium tumefaciens , 1998, Journal of bacteriology.

[26]  G. Salmond,et al.  Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor , 2006, Molecular microbiology.

[27]  E. Greenberg,et al.  Involvement of the RNA Polymerase α-Subunit C-Terminal Domain in LuxR-Dependent Activation of the Vibrio fischeri Luminescence Genes , 1999, Journal of bacteriology.

[28]  G. Salmond,et al.  Integration of the quorum‐sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi , 1998, Molecular microbiology.

[29]  E. Greenberg,et al.  Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[31]  M Welch,et al.  N‐acyl homoserine lactone binding to the CarR receptor determines quorum‐sensing specificity in Erwinia , 2000, The EMBO journal.

[32]  S. Farrand,et al.  Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Joon-Hee Lee,et al.  Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum‐sensing transcription factor , 2006, Molecular microbiology.

[34]  N. Moran,et al.  The evolutionary history of quorum-sensing systems in bacteria. , 2004, Molecular biology and evolution.

[35]  S. C. Winans,et al.  A LuxR‐type regulator from Agrobacterium tumefaciens elevates Ti plasmid copy number by activating transcription of plasmid replication genes , 2003, Molecular microbiology.

[36]  S. Busby,et al.  Positive activation of gene expression. , 1998, Current opinion in microbiology.

[37]  S. Atkinson,et al.  A hierarchical quorum‐sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping , 1999, Molecular microbiology.

[38]  D. Spring,et al.  Structure-activity relationships of Erwinia carotovora quorum sensing signaling molecules. , 2005, Bioorganic & medicinal chemistry letters.

[39]  K. Nealson,et al.  Bacterial bioluminescence: its control and ecological significance , 1979, Microbiological reviews.

[40]  James N. Sturgis,et al.  Regulatory circuits and communication in Gram-negative bacteria , 2004, Nature Reviews Microbiology.

[41]  E. Greenberg,et al.  Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. C. Winans,et al.  Identification of amino acid residues of the Agrobacterium tumefaciens quorum‐sensing regulator TraR that are critical for positive control of transcription , 2004, Molecular microbiology.

[43]  Margret I. Moré,et al.  Enzymatic Synthesis of a Quorum-Sensing Autoinducer Through Use of Defined Substrates , 1996, Science.

[44]  E. Greenberg,et al.  Acyl homoserine-lactone quorum-sensing signal generation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  John C. Anderson,et al.  Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA , 2002, Nature.

[46]  Autoinducer-independent mutants of the LuxR transcriptional activator exhibit differential effects on the twolux promoters ofVibrio fischeri , 1996, Molecular and General Genetics MGG.

[47]  Zhao-Qing Luo,et al.  Domains Formed within the N-terminal Region of the Quorumsensing Activator TraR Are Required for Transcriptional Activation and Direct Interaction with RpoA from Agrobacterium* , 2004, Journal of Biological Chemistry.

[48]  N-Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. , 2004, Bioorganic & medicinal chemistry letters.

[49]  D. Pritchard,et al.  Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators. , 2003, Journal of medicinal chemistry.

[50]  N. A. Whitehead,et al.  Quorum-sensing in Gram-negative bacteria. , 2001, FEMS microbiology reviews.

[51]  Frank Bernhard,et al.  The autoregulatory role of EsaR, a quorum‐sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function , 2002, Molecular microbiology.

[52]  P. Dunlap,et al.  Acylhomoserine Lactone Synthase Activity of the Vibrio fischeri AinS Protein , 1999, Journal of bacteriology.

[53]  E. Greenberg,et al.  Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system , 1985, Journal of bacteriology.

[54]  Simon Swift,et al.  The LuxR family protein SpnR functions as a negative regulator of N‐acylhomoserine lactone‐dependent quorum sensing in Serratia marcescens , 2002, Molecular microbiology.

[55]  R. Ebright,et al.  Transcription activation by catabolite activator protein (CAP). , 1999, Journal of molecular biology.

[56]  S. C. Winans,et al.  Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  W. Chan,et al.  Structure, activity and evolution of the group I thiolactone peptide quorum‐sensing system of Staphylococcus aureus , 2001, Molecular microbiology.

[58]  Cindra A. Widrig,et al.  Analogs of the autoinducer of bioluminescence inVibrio fischer , 1986, Archives of Microbiology.

[59]  Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. , 2002, Bioorganic & medicinal chemistry letters.

[60]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: elements of the luxI promoter , 1999, Molecular microbiology.

[61]  K. Murakami,et al.  Role of the C-Terminal Domain of the Alpha Subunit of RNA Polymerase in LuxR-Dependent Transcriptional Activation of the lux Operon during Quorum Sensing , 2002, Journal of bacteriology.

[62]  G. Salmond,et al.  Characterization of the Erwinia chrysanthemi expI–expR locus directing the synthesis of two N‐acyl‐homoserine lactone signal molecules , 1998, Molecular microbiology.

[63]  S. C. Winans,et al.  The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Klaus Winzer,et al.  Making 'sense' of metabolism: autoinducer-2, LUXS and pathogenic bacteria , 2005, Nature Reviews Microbiology.

[65]  H. Dyson,et al.  Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. , 2006, Journal of molecular biology.

[66]  L. Soulère,et al.  Synthesis and biological evaluation of homoserine lactone derived ureas as antagonists of bacterial quorum sensing. , 2006, Bioorganic & medicinal chemistry.

[67]  Gholson J. Lyon,et al.  Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria , 2004, Peptides.

[68]  E. Greenberg,et al.  Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[69]  P. Kiratisin,et al.  LasR, a Transcriptional Activator of Pseudomonas aeruginosa Virulence Genes, Functions as a Multimer , 2002, Journal of bacteriology.

[70]  S. C. Winans,et al.  Direct binding of the quorum sensing regulator CepR of Burkholderia cenocepacia to two target promoters in vitro , 2005, Molecular microbiology.

[71]  H. Schweizer,et al.  Structure of the Pseudomonas aeruginosa acyl‐homoserinelactone synthase LasI , 2004, Molecular microbiology.