Tailoring spatio-temporal dynamics with DNA circuits

Biological organisms process information through the use of complex reaction networks. These can bea great source of inspiration for the tailoring of dynamic chemical systems. Using basic DNA biochemistry–the DNA-toolbox– modeled after the cell regulatory processes, we explore the construction ofspatio-temporal dynamics from the bottom-up.First, we design a monitoring technique of DNA hybridization by harnessing a usually neglectedinteraction between the nucleobases and an attached fluorophore. This fluorescence technique –calledN-quenching– proves to be an essential tool to monitor and troubleshoot our dynamic reaction circuits.We then go on a journey to the roots of the DNA-toolbox, aiming at defining the best design rulesat the sequence level. With this experience behind us, we tackle the construction of reaction circuitsdisplaying bistability. We link the bistable behavior to a topology of circuit, which asks for specificDNA sequence parameters. This leads to a robust bistable circuit that we further use to explore themodularity of the DNA-toolbox. By wiring additional modules to the bistable function, we make twolarger circuits that can be flipped between states: a two-input switchable memory, and a single-inputpush-push memory. Because all the chemical parameters of the DNA-toolbox are easily accessible,these circuits can be very well described by quantitative mathematical modeling. By iterating thismodular approach, it should be possible to construct even larger, more complex reaction circuits: eachsuccess along this line will prove our good understanding of the underlying design rules, and eachfailure may hide some still unknown rules to unveil.Finally, we propose a simple method to bring DNA-toolbox made reaction circuits from zerodimensional,well-mixed conditions, to a two-dimensional environment allowing both reaction anddiffusion. We run an oscillating reaction circuit in two-dimensions and, by locally perturbing it, areable to provoke the emergence of traveling and spiral waves. This opens up the way to the building ofcomplex, tailor-made spatiotemporal patterns.

[1]  M. Fussenegger,et al.  An engineered epigenetic transgene switch in mammalian cells , 2004, Nature Biotechnology.

[2]  J. Ferrell Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. , 2002, Current opinion in cell biology.

[3]  Naren Ramakrishnan,et al.  Memory Switches in Chemical Reaction Space , 2008, PLoS Comput. Biol..

[4]  Andrew D. Ellington,et al.  Modelling amorphous computations with transcription networks , 2009, Journal of The Royal Society Interface.

[5]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[6]  Javier Macía,et al.  Monomeric Bistability and the Role of Autoloops in Gene Regulation , 2009, PloS one.

[7]  David Yu Zhang,et al.  Cooperative hybridization of oligonucleotides. , 2011, Journal of the American Chemical Society.

[8]  R. Losick,et al.  Developmental Commitment in a Bacterium , 2005, Cell.

[9]  R. Murray,et al.  Timing molecular motion and production with a synthetic transcriptional clock , 2011, Proceedings of the National Academy of Sciences.

[10]  M. Eigen,et al.  The origin of genetic information: viruses as models. , 1993, Gene.

[11]  Reka Albert,et al.  Biological switches and clocks , 2008, Journal of The Royal Society Interface.

[12]  Y. Rondelez Competition for catalytic resources alters biological network dynamics. , 2012, Physical review letters.

[13]  I. Nazarenko,et al.  Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. , 2002, Nucleic acids research.

[14]  J. Collins,et al.  DIVERSITY-BASED, MODEL-GUIDED CONSTRUCTION OF SYNTHETIC GENE NETWORKS WITH PREDICTED FUNCTIONS , 2009, Nature Biotechnology.

[15]  J. Wiens Population Responses to Patchy Environments , 1976 .

[16]  Jeff Hasty,et al.  Delay-induced degrade-and-fire oscillations in small genetic circuits. , 2009, Physical review letters.

[17]  L. You,et al.  Emergent bistability by a growth-modulating positive feedback circuit. , 2009, Nature chemical biology.

[18]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[19]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[20]  A. Novick,et al.  ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Seiki Kuramitsu,et al.  Structure of RecJ Exonuclease Defines Its Specificity for Single-stranded DNA* , 2010, The Journal of Biological Chemistry.

[22]  Teruo Fujii,et al.  Predator-prey molecular ecosystems. , 2013, ACS nano.

[23]  V. Noireaux,et al.  An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. , 2012, ACS synthetic biology.

[24]  F R Adler,et al.  How to make a biological switch. , 2000, Journal of theoretical biology.

[25]  David J. Galas,et al.  Isothermal reactions for the amplification of oligonucleotides , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G. Church,et al.  Next-Generation Digital Information Storage in DNA , 2012, Science.

[27]  Fei Mao,et al.  Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications , 2007, BMC biotechnology.

[28]  R. D'ari,et al.  Memory in bacteria and phage , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[29]  H. Asanuma,et al.  A photon-fueled DNA nanodevice that contains two different photoswitches. , 2012, Angewandte Chemie.

[30]  M. Jewett,et al.  Cell-free synthetic biology: thinking outside the cell. , 2012, Metabolic engineering.

[31]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[32]  Hiroyuki Fujita,et al.  Microfabricated arrays of femtoliter chambers allow single molecule enzymology , 2005, Nature Biotechnology.

[33]  Y. Sakai,et al.  Programming an in vitro DNA oscillator using a molecular networking strategy , 2011, Molecular systems biology.

[34]  Akira Suyama,et al.  A DNA Based Molecular Logic Gate Capable of a Variety of Logical Operations , 2012, DNA.

[35]  J. SantaLucia,et al.  Thermodynamic parameters for DNA sequences with dangling ends. , 2000, Nucleic acids research.

[36]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[37]  F Guarnieri,et al.  Maya Blue Paint: An Ancient Nanostructured Material , 1996, Science.

[38]  Lulu Qian,et al.  A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits , 2008, DNA.

[39]  R. Milo,et al.  Variability and memory of protein levels in human cells , 2006, Nature.

[40]  R. Abramson,et al.  Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Y. Murakami,et al.  Development of a microchamber array for picoliter PCR. , 2001, Analytical chemistry.

[42]  Haisu Ma,et al.  Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch , 2010, Molecular systems biology.

[43]  Chris Hanson,et al.  Amorphous computing , 2000, Commun. ACM.

[44]  Tetsuya Yomo,et al.  Importance of parasite RNA species repression for prolonged translation-coupled RNA self-replication. , 2012, Chemistry & biology.

[45]  M. Komiyama,et al.  Photocontrol of DNA Duplex Formation by Using Azobenzene‐Bearing Oligonucleotides , 2001, Chembiochem : a European journal of chemical biology.

[46]  Bernard Yurke,et al.  A DNA-based molecular device switchable between three distinct mechanical states , 2002 .

[47]  Robert M. Dirks,et al.  Selective cell death mediated by small conditional RNAs , 2010, Proceedings of the National Academy of Sciences.

[48]  D. Lelie,et al.  DNA-guided crystallization of colloidal nanoparticles , 2008, Nature.

[49]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[50]  Tomohiko Yamaguchi,et al.  Finding the optimal path with the aid of chemical wave , 1997 .

[51]  Tao Zhang,et al.  Self‐Assembled DNA Hydrogels with Designable Thermal and Enzymatic Responsiveness , 2011, Advanced materials.

[52]  C. Wittwer,et al.  Fluorescein-labeled oligonucleotides for real-time pcr: using the inherent quenching of deoxyguanosine nucleotides. , 2001, Analytical biochemistry.

[53]  Akira Suyama,et al.  Experiments and simulation models of a basic computation element of an autonomous molecular computing system. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  A. Turberfield,et al.  Programmable one-pot multistep organic synthesis using DNA junctions. , 2012, Journal of the American Chemical Society.

[55]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[56]  M. Hoopes,et al.  Stabilizing effects in spatial parasitoid-host and predator-prey models: a review. , 2004, Theoretical population biology.

[57]  Richard J. Lipton,et al.  Breaking DES using a molecular computer , 1995, DNA Based Computers.

[58]  J. Sutherland,et al.  Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions , 2009, Nature.

[59]  N Nakabayashi,et al.  Why do phospholipid polymers reduce protein adsorption? , 1998, Journal of biomedical materials research.

[60]  Roberto Fernandez-Lafuente,et al.  Improvement of enzyme activity, stability and selectivity via immobilization techniques , 2007 .

[61]  Michael C Jewett,et al.  Update on designing and building minimal cells. , 2010, Current opinion in biotechnology.

[62]  R. Masui,et al.  Overexpression, purification and characterization of RecJ protein from Thermus thermophilus HB8 and its core domain. , 2001, Nucleic acids research.

[63]  Richard Novak,et al.  High-performance single cell genetic analysis using microfluidic emulsion generator arrays. , 2010, Analytical chemistry.

[64]  R. Bar-Ziv,et al.  Principles of cell-free genetic circuit assembly , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[66]  E. Stellwagen,et al.  Unified description of electrophoresis and diffusion for DNA and other polyions. , 2003, Biochemistry.

[67]  Hari K. K. Subramanian,et al.  The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami. , 2011, Nano letters.

[68]  Vladimir K. Vanag,et al.  Synchronization of Chemical Micro-oscillators , 2010 .

[69]  O. Kuipers,et al.  Bistability, epigenetics, and bet-hedging in bacteria. , 2008, Annual review of microbiology.

[70]  J A Kelso,et al.  Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[72]  Teruo Fujii,et al.  Quencher-free multiplexed monitoring of DNA reaction circuits , 2012, Nucleic acids research.

[73]  M. Behlke,et al.  Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. , 2005, Biochemical and biophysical research communications.

[74]  Onn Brandman,et al.  Feedback Loops Shape Cellular Signals in Space and Time , 2008, Science.

[75]  Jonathan Bath,et al.  Reversible logic circuits made of DNA. , 2011, Journal of the American Chemical Society.

[76]  Hong Qian,et al.  Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited , 2009, Journal of The Royal Society Interface.

[77]  Magnus Jobs,et al.  iFRET: an improved fluorescence system for DNA-melting analysis. , 2002, Genome research.

[78]  Markus Sauer,et al.  NUCLEOBASE-SPECIFIC QUENCHING OF FLUORESCENT DYES. 1. NUCLEOBASE ONE-ELECTRON REDOX POTENTIALS AND THEIR CORRELATION WITH STATIC AND DYNAMIC QUENCHING EFFICIENCIES , 1996 .

[79]  J. Macdonald,et al.  Medium scale integration of molecular logic gates in an automaton. , 2006, Nano letters.

[80]  Teruo Fujii,et al.  Microfabricated flow-through device for DNA amplification—towards in situ gene analysis , 2004 .

[81]  A. J. Lotka UNDAMPED OSCILLATIONS DERIVED FROM THE LAW OF MASS ACTION. , 1920 .

[82]  Michael R. Diehl,et al.  Configuring robust DNA strand displacement reactions for in situ molecular analyses , 2011, Nucleic acids research.

[83]  James E. Ferrell,et al.  A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision , 2007, Nature.

[84]  C Zimmer,et al.  Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. , 1986, Progress in biophysics and molecular biology.

[85]  A. Zhabotinsky A history of chemical oscillations and waves. , 1991, Chaos.

[86]  A. Turberfield,et al.  Sequence-specific synthesis of macromolecules using DNA-templated chemistry. , 2012, Chemical communications.

[87]  E. Wimmer,et al.  MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network , 2022 .

[88]  M. West,et al.  Origin of bistability underlying mammalian cell cycle entry , 2011, Molecular systems biology.

[89]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[90]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[91]  R. Masui,et al.  Role of RecJ-like Protein with 5′-3′ Exonuclease Activity in Oligo(deoxy)nucleotide Degradation* , 2010, The Journal of Biological Chemistry.

[92]  K. Hirota,et al.  Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. , 2005, FEMS microbiology letters.

[93]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[94]  Moh’d A. Al-Nimr,et al.  Non-equilibrium thermodynamics of heterogeneous systems , 2010 .

[95]  E. Winfree,et al.  Construction of an in vitro bistable circuit from synthetic transcriptional switches , 2006, Molecular systems biology.

[96]  Luca Cardelli,et al.  Abstractions for DNA circuit design , 2011, Journal of The Royal Society Interface.

[97]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[98]  H. Jia,et al.  Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility , 2003, Biotechnology and bioengineering.

[99]  Ertugrul M. Ozbudak,et al.  Multistability in the lactose utilization network of Escherichia coli , 2004, Nature.

[100]  Erik Winfree,et al.  Ensemble Bayesian analysis of bistability in a synthetic transcriptional switch. , 2012, ACS synthetic biology.

[101]  Vincent Noireaux,et al.  Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70 , 2010, Journal of biological engineering.

[102]  G. F. Joyce The antiquity of RNA-based evolution , 2002, Nature.

[103]  Vincent Noireaux,et al.  A vesicle bioreactor as a step toward an artificial cell assembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[104]  J. Boissonade,et al.  Transitions from bistability to limit cycle oscillations. Theoretical analysis and experimental evidence in an open chemical system , 1980 .

[105]  Dong-Chul Han,et al.  PDMS-based micro PCR chip with Parylene coating , 2003 .

[106]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[107]  L. Tsimring,et al.  A synchronized quorum of genetic clocks , 2009, Nature.

[108]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[109]  R. Weiss,et al.  Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[111]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[112]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[113]  Jules Moreau,et al.  Molecular Computation by DNA Hairpin Formation , 2000 .

[114]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[115]  J P Landers,et al.  Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction , 2001, Electrophoresis.

[116]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[117]  Sanjay Tyagi,et al.  Molecular Beacons: Probes that Fluoresce upon Hybridization , 1996, Nature Biotechnology.

[118]  I. Epstein,et al.  An Introduction to Nonlinear Chemical Dynamics , 1998 .

[119]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[120]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[121]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[122]  Ehud Shapiro,et al.  DNA molecule provides a computing machine with both data and fuel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[123]  R. Yolken,et al.  Use of modified nucleotides and uracil-DNA glycosylase (UNG) for the control of contamination in the PCR-based amplification of RNA. , 1992, Molecular and cellular probes.

[124]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[125]  Molecular Parasites That Evolve Longer Genomes , 1999, Journal of Molecular Evolution.

[126]  S. Benner,et al.  Nucleoside alpha-thiotriphosphates, polymerases and the exonuclease III analysis of oligonucleotides containing phosphorothioate linkages , 2007, Nucleic acids research.

[127]  Masami Hagiya,et al.  Chain Reaction Systems Based on Loop Dissociation of DNA , 2005, DNA.

[128]  B Bunow,et al.  Pattern formation by reaction-diffusion instabilities: application to morphogenesis in Drosophila. , 1980, Journal of theoretical biology.

[129]  S Hamels,et al.  Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. , 2000, Analytical biochemistry.

[130]  G. F. Joyce,et al.  Self-Sustained Replication of an RNA Enzyme , 2009, Science.

[131]  J. Monod,et al.  General Conclusions: Teleonomic Mechanisms in Cellular Metabolism, Growth, and Differentiation , 1978 .

[132]  Vincent Noireaux,et al.  Development of an artificial cell, from self-organization to computation and self-reproduction , 2011 .

[133]  Gregory D. Smith,et al.  Emergence of Switch-Like Behavior in a Large Family of Simple Biochemical Networks , 2011, PLoS Comput. Biol..

[134]  Fred Russell Kramer,et al.  Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. , 2002, Nucleic acids research.

[135]  Conrad Steenberg,et al.  NUPACK: Analysis and design of nucleic acid systems , 2011, J. Comput. Chem..

[136]  Nicholas J. Guido,et al.  A bottom-up approach to gene regulation , 2006, Nature.

[137]  Michael L Simpson,et al.  Cell-free synthetic biology: a bottom-up approach to discovery by design , 2006, Molecular systems biology.

[138]  James J. Collins,et al.  Next-Generation Synthetic Gene Networks , 2009, Nature Biotechnology.

[139]  François Taddei,et al.  Molecular Systems Biology 6; Article number 357; doi:10.1038/msb.2010.12 Citation: Molecular Systems Biology 6:357 , 2022 .

[140]  A S Verkman,et al.  Size-dependent DNA Mobility in Cytoplasm and Nucleus* , 2000, The Journal of Biological Chemistry.

[141]  Richard J. Lipton,et al.  On the Computational Power of DNA , 1996, Discret. Appl. Math..

[142]  P. Hagerman,et al.  Analysis of fluorescence energy transfer in duplex and branched DNA molecules. , 1990, Biochemistry.

[143]  Y. Kamagata,et al.  Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY((R)) FL-labeled probe or primer. , 2001, Nucleic acids research.

[144]  S. Riley Large-Scale Spatial-Transmission Models of Infectious Disease , 2007, Science.

[145]  J. Tyson,et al.  Design principles of biochemical oscillators , 2008, Nature Reviews Molecular Cell Biology.

[146]  Masahiro Takinoue,et al.  RTRACS: a modularized RNA-dependent RNA transcription system with high programmability. , 2011, Accounts of chemical research.

[147]  L. Pearl,et al.  A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[148]  Erik Winfree,et al.  Robustness and modularity properties of a non-covalent DNA catalytic reaction , 2010, Nucleic acids research.

[149]  S. Kondo,et al.  A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus , 1995, Nature.

[150]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[151]  Angelika Niemz,et al.  Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. , 2008, Biochemistry.

[152]  Pierre Auger,et al.  Macroscopic Dynamic Effects of Migrations in Patchy Predator-prey Systems , 1997 .

[153]  Akira Suyama,et al.  Construction of AND Gate for RTRACS with the Capacity of Extension to NAND Gate , 2009, DNA.

[154]  Chaoyong James Yang,et al.  High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. , 2008, Analytical chemistry.

[155]  M. Elowitz,et al.  Synthetic Biology: Integrated Gene Circuits , 2011, Science.

[156]  Wenyuan Chen,et al.  DNA amplification on a PDMS–glass hybrid microchip , 2006 .

[157]  R J Lipton,et al.  DNA solution of hard computational problems. , 1995, Science.

[158]  Béla Novák,et al.  Cell cycle commitment in budding yeast emerges from the cooperation of multiple bistable switches , 2011, Open Biology.

[159]  Le A. Trinh,et al.  Programmable in situ amplification for multiplexed imaging of mRNA expression , 2010, Nature Biotechnology.

[160]  C. Krebs,et al.  Impact of Food and Predation on the Snowshoe Hare Cycle , 1995, Science.

[161]  Andrew D Griffiths,et al.  Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. , 2009, Analytical chemistry.

[162]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[163]  K. Ishihara,et al.  Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. , 2006, Biomaterials.

[164]  Erik Winfree,et al.  Catalyzed relaxation of a metastable DNA fuel. , 2006, Journal of the American Chemical Society.

[165]  Erik Winfree,et al.  DNA as a universal substrate for chemical kinetics , 2009, Proceedings of the National Academy of Sciences.

[166]  L F Landweber,et al.  Molecular computation: RNA solutions to chess problems , 2000, Proc. Natl. Acad. Sci. USA.

[167]  E. Winfree,et al.  Synthetic in vitro transcriptional oscillators , 2011, Molecular systems biology.

[168]  Irving R Epstein,et al.  Diffusively coupled chemical oscillators in a microfluidic assembly. , 2008, Angewandte Chemie.

[169]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[170]  Y. Kamagata,et al.  Fluorescence-Quenching Phenomenon by Photoinduced Electron Transfer between a Fluorescent Dye and a Nucleotide Base , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[171]  A. Ōkubo,et al.  On the spatial spread of the grey squirrel in Britain , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[172]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[173]  G. Church,et al.  Synthetic Gene Networks That Count , 2009, Science.

[174]  Mehmet Toner,et al.  Controlled encapsulation of single-cells into monodisperse picolitre drops. , 2008, Lab on a chip.

[175]  P. Schuster,et al.  Stages of emerging life —Five principles of early organization , 2005, Journal of Molecular Evolution.

[176]  V. Hakim,et al.  Design of genetic networks with specified functions by evolution in silico. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[177]  L. Sowers,et al.  The paradoxical influence of thymine analogues on restriction endonuclease cleavage of oligodeoxynucleotides. , 1996, Biochemistry.

[178]  J. Tabony,et al.  Reaction-diffusion microtubule concentration patterns occur during biological morphogenesis. , 1999, Biophysical chemistry.

[179]  D. Endy,et al.  Rewritable digital data storage in live cells via engineered control of recombination directionality , 2012, Proceedings of the National Academy of Sciences.

[180]  Robert M. Dirks,et al.  Triggered amplification by hybridization chain reaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[181]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[182]  Peng Yin,et al.  Optimizing the specificity of nucleic acid hybridization. , 2012, Nature chemistry.

[183]  Amina A. Qutub,et al.  Multiplexed in situ immunofluorescence using dynamic DNA complexes. , 2012, Angewandte Chemie.

[184]  T. Lacalli Modeling the Drosophila pair-rule pattern by reaction-diffusion: gap input and pattern control in a 4-morphogen system. , 1990, Journal of theoretical biology.

[185]  F. Simmel,et al.  Using DNA to construct and power a nanoactuator. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[186]  Vincenzo Capasso,et al.  Analysis of a Reaction-Diffusion System Modeling Man-Environment-Man Epidemics , 1997, SIAM J. Appl. Math..

[187]  Arend Hintze,et al.  Sequence dependence of isothermal DNA amplification via EXPAR , 2012, Nucleic acids research.

[188]  Shigeru Kondo,et al.  Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.

[189]  Akira Suyama,et al.  RNA Oscillator: Limit Cycle Oscillations based on Artificial Biomolecular Reactions , 2009, New Generation Computing.

[190]  Lila Kari,et al.  Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits Using DNA Strand Displacement , 2010, DNA.

[191]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[192]  P D Kaplan,et al.  DNA solution of the maximal clique problem. , 1997, Science.

[193]  Michael Zuker,et al.  DINAMelt web server for nucleic acid melting prediction , 2005, Nucleic Acids Res..

[194]  Clifford R. Johnson,et al.  Solution of a 20-Variable 3-SAT Problem on a DNA Computer , 2002, Science.

[195]  L. Stols,et al.  Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution. , 1993, Biochemistry.