Free De Morgan Bisemigroups and Bisemilattices

We give a geometric representation of free De Morgan bisemigroups, free commutative De Morgan bisemigroups, and free De Morgan bisemilattices by using labeled graphs.

[1]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[2]  Pascal Weil,et al.  Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..

[3]  J. Grabowski,et al.  On partial languages , 1981, Fundam. Informaticae.

[4]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[5]  Zoltán Ésik,et al.  Automata on Series-Parallel Biposets , 2001 .

[6]  Shuji Jimbo,et al.  Formal Languages over Free Binoids , 2000, J. Autom. Lang. Comb..

[7]  Eugene L. Lawler,et al.  The Recognition of Series Parallel Digraphs , 1982, SIAM J. Comput..

[8]  Dietrich Kuske,et al.  Infinite Series-Parallel Posets: Logic and Languages , 2000, ICALP.

[9]  Jay L. Gischer,et al.  The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..