Interfaces with Other Disciplines On the strategic behavior of large investors : A mean-variance portfolio approach ✩

One key assumption of Markowitz’s model is that all traders act as price takers. In this paper, we extend this mean-variance approach in a setting where large investors can move prices. Instead of having an individual optimization problem, we find the investors’ Nash equilibrium and redefine the efficient frontier in this new framework.

[1]  E. Jouini,et al.  Martingales and Arbitrage in Securities Markets with Transaction Costs , 1995 .

[2]  Jakša Cvitanić,et al.  Optimal consumption choices for a 'large' investor , 1998 .

[3]  Louis K.C. Chan,et al.  The Behavior of Stock Prices Around Institutional Trades , 1993 .

[4]  F. Foster,et al.  Strategic Trading When Agents Forecast the Forecasts of Others , 1996 .

[5]  A. R. Norman,et al.  Portfolio Selection with Transaction Costs , 1990, Math. Oper. Res..

[6]  Peter Bank,et al.  Hedging and Portfolio Optimization in Financial Markets with a Large Trader , 2004 .

[7]  Jiang Wang,et al.  Dynamic Volume-Return Relation of Individual Stocks , 2000 .

[8]  James E. Smith,et al.  Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds , 2011, Manag. Sci..

[9]  Philip Protter,et al.  Liquidity Risk and Arbitrage Pricing Theory , 2004 .

[10]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .

[11]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[12]  Strategic behavior in financial markets , 2010 .

[13]  Luis M. Viceira,et al.  Appendix for "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors" , 2001 .

[14]  Frank J. Fabozzi,et al.  60 Years of portfolio optimization: Practical challenges and current trends , 2014, Eur. J. Oper. Res..

[15]  M. Arulraj,et al.  Global Portfolio Optimization for BSE Sensex using the Enhanced Black Litterman Model , 2012 .

[16]  Philip Protter,et al.  Noname manuscript No. (will be inserted by the editor) Liquidity Risk and Arbitrage Pricing Theory , 2003 .

[17]  Jiang Wang,et al.  Trading Volume and Serial Correlation in Stock Returns , 1992 .

[18]  F. Albert Wang Strategic trading, asymmetric information and heterogeneous prior beliefs , 1998 .

[19]  Andrea Prat,et al.  The Price Impact of Institutional Herding , 2010 .

[20]  Jiang Wang,et al.  A Model of Competitive Stock Trading Volume , 1994, Journal of Political Economy.

[21]  N. Abbas,et al.  DYNAMIC PORTFOLIO OPTIMIZATION WITH TRANSACTION COST , 2015 .

[22]  ClarkeRoger,et al.  Portfolio Constraints and the Fundamental Law of Active Management , 2006 .

[23]  G. Papanicolaou,et al.  General Black-Scholes models accounting for increased market volatility from hedging strategies , 1998 .

[24]  James B. Heian,et al.  TRADING-VOLUME SHOCKS AND STOCK RETURNS: AN EMPIRICAL ANALYSIS , 2010 .

[25]  Huyên Pham,et al.  A model of optimal portfolio selection under liquidity risk and price impact , 2006, Finance Stochastics.