Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.

A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifugation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coefficient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution can be obtained than from van Holde-Weischet analysis. The sensitivity to the values of the regularization parameter and to the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size distributions, and by applications to experimental data of continuous and discrete protein mixtures.

[1]  R. Johnson,et al.  Ultracentrifuge studies with absorption optics. I. An automatic photoelectric scanning absorption system. , 1962, Archives of biochemistry and biophysics.

[2]  Thomas M. Laue,et al.  Prototype fluorimeter for the XLA/XLI analytical ultracentrifuge , 1997, Photonics West - Biomedical Optics.

[3]  T. Laue,et al.  Modern Analytical Ultracentrifugation , 1994, Emerging Biochemical and Biophysical Techniques.

[4]  C. MacPhee,et al.  Determination of sedimentation coefficients for small peptides. , 1998, Biophysical journal.

[5]  W. B. Bridgman Some Physical Chemical Characteristics of Glycogen , 1942 .

[6]  P. Schuck,et al.  Direct sedimentation analysis of interference optical data in analytical ultracentrifugation. , 1999, Biophysical journal.

[7]  P. Schuck Sedimentation equilibrium analysis of interference optical data by systematic noise decomposition. , 1999, Analytical biochemistry.

[8]  J. Claverie,et al.  Sedimentation of generalized systems of interacting particles. II. Active enzyme centrifugation—theory and extensions of its validity range , 1975, Biopolymers.

[9]  Umberto Amato,et al.  Maximum entropy regularization of Fredholm integral equations of the first kind , 1991 .

[10]  S. N. Timasheff,et al.  Magnesium-induced self-association of calf brain tubulin. I. Stoichiometry. , 1975, Biochemistry.

[11]  G. Weiss,et al.  Numerical solutions of the Lamm equation. IV. Rotor slowing experiments , 1967 .

[12]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  H. K. Schachman,et al.  Ultracentrifuge studies with absorption optics. II. Incorporation of a monochromator and its application to the study of proteins and interacting systems. , 1962, Archives of biochemistry and biophysics.

[14]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[15]  A. Finazzi-Agro’,et al.  Structural heterogeneity and subunit composition of horse ferritins. , 1982, Biochemistry.

[16]  William H. Press,et al.  Numerical recipes in C , 2002 .

[17]  S. Harding,et al.  On the hydrodynamic analysis of macromolecular conformation. , 1995, Biophysical chemistry.

[18]  R. L. Baldwin Mathematical Theory of Sedimentation Analysis. , 1963 .

[19]  Stafford Sedimentation velocity spins a new weave for an old fabric. , 1997, Current opinion in biotechnology.

[20]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[21]  J. Claverie Sedimentation of generalized systems of interacting particles. III. Concentration‐dependent sedimentation and extension to other transport methods , 1976, Biopolymers.

[22]  P. Hansen Numerical tools for analysis and solution of Fredholm integral equations of the first kind , 1992 .

[23]  W. Stafford,et al.  Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. , 1992, Analytical biochemistry.

[24]  Steven A. Soper,et al.  Ultrasensitive Biochemical Diagnostics II , 1997 .

[25]  W. Goad,et al.  THEORY OF SEDIMENTATION OF INTERACTING SYSTEMS , 1969 .

[26]  H. K. Schachman Ultracentrifugation in biochemistry , 1959 .

[27]  S. Provencher CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations , 1984 .

[28]  W. Maechtle,et al.  Modern methods for determining the molar mass distribution of polymers. General considerations and application to sedimentation equilibrium , 1992 .

[29]  Thomas M. Laue,et al.  An on-line interferometer for the XL-A ultracentrifuge , 1994 .

[30]  M. Straume,et al.  Comments on the Analysis of Sedimentation Equilibrium Experiments , 1994 .

[31]  K. V. van Holde,et al.  Boundary analysis of sedimentation‐velocity experiments with monodisperse and paucidisperse solutes , 1978 .

[32]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[33]  G. Weiss,et al.  Numerical solutions of the Lamm equation. I. Numerical procedure , 1966 .

[34]  D. Cox,et al.  Computer simulation of sedimentation in the ultracentrifuge. IV. Velocity sedimentation of self-associating solutes. , 1969, Archives of biochemistry and biophysics.

[35]  D. Riesner,et al.  A fluorescence detection system for the analytical ultracentrifuge and its application to proteins, nucleic acids, and viruses , 1990 .

[36]  D. F. Waugh,et al.  Protein-protein interactions. , 1954, Advances in protein chemistry.

[37]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947 .

[38]  Arthur J. Rowe,et al.  Analytical ultracentrifugation in biochemistry and polymer science , 1992 .

[39]  C. R. Smith,et al.  Maximum-Entropy and Bayesian Methods in Inverse Problems , 1985 .

[40]  P. Schuck Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. , 1998, Biophysical journal.

[41]  J. Vinograd,et al.  Band centrifugation of macromolecules in self‐generating density gradients. II. Sedimentation and diffusion of macromolecules in bands , 1966 .

[42]  B Demeler,et al.  Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation. , 1998, Biophysical journal.

[43]  S. Provencher A constrained regularization method for inverting data represented by linear algebraic or integral equations , 1982 .

[44]  K. V. van Holde,et al.  Frictional coefficients of multisubunit structures. I. Theory , 1967, Biopolymers.

[45]  D. Sattelle,et al.  Laser light scattering in biochemistry , 1992 .

[46]  G. A. Gilbert,et al.  Sedimentation velocity measurement of protein association. , 1973, Methods in Enzymology.

[47]  J. Philpot The Ultracentrifuge , 1943, Nature.

[48]  G. A. Gilbert,et al.  [11] Sedimentation velocity measurement of protein association , 1973 .

[49]  R. Signer,et al.  Ultrazentrifugale Polydispersitätsbestimmungen an hochpolymeren Stoffen. 95. Mitteilung über hochpolymere Verbindungen , 1934 .

[50]  C. Price,et al.  Copolymerization of phenylacetylene with vinylpyridine , 1951 .

[51]  J. Hansen,et al.  Identification and interpretation of complexity in sedimentation velocity boundaries. , 1997, Biophysical journal.

[52]  W. Maechtle,et al.  High-resolution, submicron particle size distribution analysis using gravitational-sweep sedimentation. , 1999, Biophysical journal.

[53]  R. L. Baldwin,et al.  BOUNDARY SPREADING IN SEDIMENTATION VELOCITY EXPERIMENTS , 1950 .

[54]  S. Provencher,et al.  Inverse problems in polymer characterization: Direct analysis of polydispersity with photon correlation spectroscopy , 1979 .

[55]  J. Philo An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. , 1997, Biophysical journal.

[56]  J. Cann,et al.  Theory of sedimentation for kinetically controlled dimerization reactions. , 1974, Biochemistry.

[57]  H. Cölfen,et al.  Hydrodynamic Analysis of Macromolecular Conformation. A Comparative Study of Flow Field Flow Fractionation and Analytical Ultracentrifugation , 1998 .

[58]  D. M. Gersten,et al.  Staining for enzymatic activity after gel electrophoresis, I. , 1992, Analytical biochemistry.

[59]  T. M. Schuster,et al.  New revolutions in the evolution of analytical ultracentrifugation. , 1996, Current opinion in structural biology.

[60]  S. Provencher Low-bias macroscopic analysis of polydispersity. , 1991, Biochemical Society transactions.

[61]  D. Cox Computer simulation of sedimentation in the ultracentrifuge. VI. Monomer-tetramer systems in rapid chemical equilibrium. , 1971, Archives of biochemistry and biophysics.

[62]  G. Rivas,et al.  Characterization of heterologous protein-protein interactions using analytical ultracentrifugation. , 1999, Methods.