PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen Helicobacter pylori.

DNA sequence diversity among 60 independent isolates of the gastric pathogen Helicobacter pylori was assessed by testing for restriction fragment length polymorphisms (RFLPs) in several PCR-amplified gene segments. 18 Mbol and 27 HaeIII RFLPs were found in the 2.4 kb ureA-ureB (urease) segment from the 60 strains; this identified 44 separate groups, with each group containing one to four isolates. With one exception, each isolate not distinguished from the others by RFLPs in ureA-ureB was distinguished by Mbol digestion of the neighboring 1.7 kb ureC-ureD segment. The 1.5 kb flaA (flagellin) gene, which is not close to ure gene cluster, was also highly polymorphic. In contrast, isolates from initial and followup biopsies yielded identical restriction patterns in each of the three cases tested. The potential of this method for detecting population heterogeneity was tested by mixing DNAs from different strains before amplification: the arrays of restriction fragments obtained indicated co-amplification from both genomes in each of the five pairwise combinations tested. These results show that H. pylori is a very diverse species, that indicate PCR-based RFLP tests are almost as sensitive as arbitrary primer PCR (RAPD) tests, and suggest that such RFLP tests will be useful for direct analysis of H. pylori in biopsy and gastric juice specimens.