Combining diffusion and perfusion differentiates tumor from bevacizumab-related imaging abnormality (bria)

[1]  M. Ahluwalia,et al.  Treatment of Cerebral Radiation Necrosis With Bevacizumab: The Cleveland Clinic Experience , 2013, American Journal of Clinical Oncology.

[2]  Y. Yamada,et al.  Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery. , 2013, Neuro-oncology.

[3]  A. Dale,et al.  Longitudinal Restriction Spectrum Imaging Is Resistant to Pseudoresponse in Patients with High-Grade Gliomas Treated with Bevacizumab , 2013, American Journal of Neuroradiology.

[4]  A. Dale,et al.  Improved Conspicuity and Delineation of High-Grade Primary and Metastatic Brain Tumors Using “Restriction Spectrum Imaging”: Quantitative Comparison with High B-Value DWI and ADC , 2013, American Journal of Neuroradiology.

[5]  Helen D'Arceuil,et al.  Probing tissue microstructure with restriction spectrum imaging: Histological and theoretical validation , 2013, Human brain mapping.

[6]  R. Soffietti,et al.  Targeted therapy in brain metastasis , 2012, Current opinion in oncology.

[7]  T. Cloughesy,et al.  Persistent Diffusion-Restricted Lesions in Bevacizumab-Treated Malignant Gliomas Are Associated with Improved Survival Compared with Matched Controls , 2012, American Journal of Neuroradiology.

[8]  Surjith Vattoth,et al.  Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. , 2012, Radiographics : a review publication of the Radiological Society of North America, Inc.

[9]  A. Rossi,et al.  Targeting angiogenesis for treatment of NSCLC brain metastases. , 2012, Current cancer drug targets.

[10]  A G Sorensen,et al.  Pseudoprogression and Pseudoresponse: Imaging Challenges in the Assessment of Posttreatment Glioma , 2011, American Journal of Neuroradiology.

[11]  W. Curry,et al.  Exacerbation of cerebral radiation necrosis by bevacizumab. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  Anders M. Dale,et al.  Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging , 2010, NeuroImage.

[13]  P. LaViolette,et al.  Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity , 2010, Journal of magnetic resonance imaging : JMRI.

[14]  E. Hattingen,et al.  Bevacizumab-induced diffusion-restricted lesions in malignant glioma patients , 2010, Journal of Neuro-Oncology.

[15]  A. Bjørnerud,et al.  An Automatic Procedure for Normalization of Cerebral Blood Volume Maps in Dynamic Susceptibility Contrast−Based Glioma Imaging , 2009, American Journal of Neuroradiology.

[16]  T. Mikkelsen,et al.  Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Y. Yoshii Pathological review of late cerebral radionecrosis , 2008, Brain Tumor Pathology.

[18]  K. Kono,et al.  The role of diffusion-weighted imaging in patients with brain tumors. , 2001, AJNR. American journal of neuroradiology.

[19]  Toshinori Hirai,et al.  Usefulness of diffusion‐weighted MRI with echo‐planar technique in the evaluation of cellularity in gliomas , 1999, Journal of magnetic resonance imaging : JMRI.