Crystallographic Texture of Materials

Many naturally occurring as well as man made materials comprise of large number of crystallites with a preferred orientation. The preferred orientation, popularly known as texture, governs various structural and mechanical properties of these materials. Texture may develop during variety of processes like solidification, plastic deformation, annealing and phase transformation. It is, therefore, possible to tailor texture in materials to enhance a particular property. Traditionally, X-ray and neutron diffraction had been used to study texture in materials. It has been very recently that other techniques based on synchrotron X-rays and SEM based Electron Backscattered Diffraction have been developed for complete characterization of texture in materials. In the present review, the authors discuss the pole figures and more comprehensive orientation distribution function methods for texture analysis. In addition, a brief account of texture evolution in various technologically important materials, ranging from common metals and alloys to intermetallics, ceramics and polymers along with some naturally occurring materials like rocks, ice, bones etc. has been given. The present review is particularly aimed at readers newly initiated in this field rather than the experts.

[1]  U. F. Kocks,et al.  Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties , 1998 .

[2]  S. Suwas,et al.  Evolution of hot rolling textures in a two-phase (α2+β) Ti3Al base alloy , 1999 .

[3]  H. Wenk,et al.  Microstructure and microtexture of highly cold-rolled commercially pure titanium , 2007 .

[4]  Hsun Hu,et al.  Texture Transition in High‐Purity Silver and Its Correlation with Stacking Fault Frequency , 1961 .

[5]  J. Jonas,et al.  Development of ferrite rolling textures in low- and extra low-carbon steels , 1990 .

[6]  K. Neale,et al.  Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear , 2007 .

[7]  Surya R. Kalidindi,et al.  Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction , 2002 .

[8]  T. Leffers Deformation rate dependence of rolling texture in brass containing 5% zinc , 1968 .

[9]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[10]  S. Raj,et al.  Correlation of deformation mechanisms with the tensile and compressive behavior of NiAl and NiAl(Zr) intermetallic alloys , 1992 .

[11]  K. Bowman,et al.  Texture in hot-worked B2-structure aluminides , 1993 .

[12]  D. Kuhlmann-wilsdorf,et al.  Microstructural evolution in rolled aluminium , 1992 .

[13]  Q. Liu,et al.  Deformation microstructure and orientation of f.c.c. crystals , 1995 .

[14]  M. Semchyshen,et al.  PREFERRED ORIENTATION OF ARC-CAST MOLYBDENUM SHEET , 1952 .

[15]  O. Engler,et al.  Introduction to texture analysis : macrotexture, microtexture and orientation mapping , 2000 .

[16]  M. V. Klassen-Neklyudova,et al.  Plasticity of Crystals , 2012 .

[17]  A. Haldar,et al.  Microstructural and textural development in an extra low carbon steel during warm rolling , 2005 .

[18]  L. Murr Interfacial phenomena in metals and alloys , 1975 .

[19]  M. Hatherly,et al.  Microstructure and texture of rolled {112}〈111〉 copper single crystals , 1988 .

[20]  T. Leffers A Modified Cross-Slip Theory for the Rolling Texture of Face-Centered Cubic Metals and Alloys , 1969 .

[21]  A. Luft Microstructural processes of plastic instabilities in strengthened metals , 1991 .

[22]  P. Franciosi,et al.  Temperature and orientation dependent plasticity features of Cu and Al single crystals under axial compression-I. Lattice rotation effects and true hardening stages , 1997 .

[23]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[24]  S. Semiatin,et al.  Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium , 2005 .

[25]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[26]  G. Davies,et al.  Texture and Cleavage in Molybdenum , 1983 .

[27]  G. Sachs,et al.  Zur Ableitung einer Fließbedingung , 1929 .

[28]  D. Raabe,et al.  Texture and microstructure of rolled and annealed tantalum , 1994 .

[29]  W. B. Lee,et al.  Anneal hardening in α-brass , 1983 .

[30]  T. Leffers,et al.  Microstructure and composite deformation pattern for rolled brass , 1997 .

[31]  Paul Van Houtte,et al.  Deformation texture prediction: from the Taylor model to the advanced Lamel model , 2005 .

[32]  M. Arzaghi,et al.  Contribution of non-octahedral slip to texture evolution of fcc polycrystals in simple shear , 2009 .

[33]  C. S. Barrett Structure of Metals; Crystallographic Methods, Principles, and Data , 1966 .

[34]  M. Vieira,et al.  Complex strain paths in polycrystalline copper: microstructural aspects , 1999 .

[35]  C. Leyens,et al.  Titanium and titanium alloys : fundamentals and applications , 2005 .

[36]  S. Chowdhury,et al.  Development of cold rolling texture in Ni3Al (B) , 1995 .

[37]  Hsun Hu,et al.  Temperature Dependence of Rolling Textures in High‐Purity Silver , 1961 .

[38]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .

[39]  J. Hirsch,et al.  Rolling textures in FCC and BCC metals investigated by means of ODF'S , 1985 .

[40]  R. Ray,et al.  Deformation behavior of a Ni3Al(B,Zr) alloy during cold rolling: Part II. Microstructural and textural changes , 2000 .

[41]  Sanak Mishra,et al.  Role and control of texture in deep-drawing steels , 1982 .

[42]  S. Suwas,et al.  Evolution of texture in the β(B2) phase of a two phase titanium aluminide intermetallic alloy Ti-24Al-11Nb , 2000 .

[43]  Rudolf Bauer,et al.  Textures of copper single crystals after rolling at room temperature , 1977 .

[44]  J. Fundenberger,et al.  Modelling and prediction of mechanical properties for materials with hexagonal symmetry (zinc, titanium and zirconium alloys) , 1997 .

[45]  W. Yeung Non-octahedral deformation activity in cold rolled 70:30 brass and its influence on the development of brass texture , 1990 .

[46]  R. Smallman,et al.  The dependence of rolling texture on stacking fault energy , 1964 .

[47]  F. J. Humphreys,et al.  Onset of abnormal subgrain growth in cold rolled {1 1 0}〈0 0 1〉 oriented copper single crystals , 2006 .

[48]  T. Leffers,et al.  Intra- and intergranular heterogeneities in the plastic deformation of brass during rolling , 1990 .

[49]  Raymond F. Wegman,et al.  Titanium and Titanium Alloys , 2013 .

[50]  J. Jonas,et al.  Relation between axial stresses and texture development during torsion testing: A simplified theory , 1985 .

[51]  J. Jonas,et al.  Cold rolling and annealing textures in low carbon and extra low carbon steels , 1994 .

[52]  J. C. Huang,et al.  Texture analysis in hexagonal materials , 2003 .

[53]  P. Van Houtte,et al.  Large strain work hardening and textures , 1980 .

[54]  H. Mecking,et al.  A Method for the Determination of the Active Slip Systems and Orientation Changes During Single Crystal Deformation , 1978 .

[55]  Charles O. Smith Nuclear reactor materials , 1967 .

[56]  H. Inoue,et al.  Transformation Textures in Ti–15V–3Cr–3Sn–3Al Alloy Sheets , 1992 .

[57]  Charles S. Barrett,et al.  The Structure of Metals , 1904, Nature.

[58]  T. Leffers Computer Simulation of the Plastic Deformation in Face-Centred Cubic Polycrystals and the Rolling Texture Derived , 1968, January 1.

[59]  P. Gilormini The theory of rate sensitive pencil glide application to rolling textures , 1989 .

[60]  J. Hirsch,et al.  Overview No. 76: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. Metals—III. The influence of slip inhomogeneities and twinning , 1988 .

[61]  O. Engler Deformation and texture of copper–manganese alloys , 2000 .

[62]  Dierk Raabe,et al.  Computational Materials Science: The Simulation of Materials Microstructures and Properties , 1998 .

[63]  I. Dillamore Deformation textures in metals , 1976, Journal of the Geological Society.

[64]  G. M. Michal,et al.  Preferred orientations in extruded nickel and iron aluminides , 1990 .

[65]  H. Fukutomi,et al.  Formation of a (001) [100] deformation structure in aluminum single crystals of an S-orientation , 1993 .

[66]  H. Bunge Texture Analysis in Materials Science: Mathematical Methods , 2013 .

[67]  D. Raabe,et al.  Rolling Textures of Niobium and Molybdenum , 1994 .

[68]  Toshiaki Urabe,et al.  Modeling Texture Change during the Recrystallization of an IF Steel , 1994 .

[69]  T. Leffers,et al.  Texture Development in Ni-Co Alloys Rolled to Moderate Reductions , 2002 .

[70]  S. Chowdhury,et al.  Rolling texture in the intermetallic compound Ni76Al24(B) , 1998 .

[71]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[72]  Günter Wassermann,et al.  Texturen metallischer Werkstoffe , 1962 .

[73]  W. Hutchinson,et al.  A study of the nucleation of recrystallization using HVEM , 1975 .

[74]  Hsun Hu,et al.  Rolling Textures in Face-Centered Cubic Metals , 1952 .

[75]  R. Ray Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys , 1995 .

[76]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[77]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[78]  H. Wenk,et al.  Texture and Anisotropy , 2004 .