Decision making under uncertain and dependent system rates in service systems

Abstract In this paper, we propose decision analysis methods for determining the optimal number of agents of a service system where the system rates (arrival, service, and abandonment) are modeled as dependent random variables. In doing so, we take the Bayesian point of view of inference and obtain joint posterior distributions of the system rates. We solve the proposed stochastic staffing decision problem with augmented probability simulation based optimization methods. The novelty of our approach stems from the use of dependent system rates to determine optimal staffing in a constrained optimization setting for stochastic service systems. We demonstrate the implications of ignoring dependence and uncertainty in system rates on simulated data for general service systems, and illustrate the application of the proposed methodology on call center operations.

[1]  M. J. Bayarri,et al.  Bayesian prediction inM/M/1 queues , 1994, Queueing Syst. Theory Appl..

[2]  Michael P. Wiper,et al.  Bayesian analysis of M/Er/1 and M/H_k/1 queues , 1998, Queueing Syst. Theory Appl..

[3]  Nozer D. Singpurwalla,et al.  A subjective Bayesian approach to the theory of queues I — Modeling , 1987, Queueing Syst. Theory Appl..

[5]  Jonathan Weinberg,et al.  Bayesian Forecasting of an Inhomogeneous Poisson Process With Applications to Call Center Data , 2007 .

[6]  David P. Morton,et al.  Staffing call centers under arrival-rate uncertainty with Bayesian updates , 2018, Oper. Res. Lett..

[7]  Michel Gendreau,et al.  Optimizing daily agent scheduling in a multiskill call center , 2010, Eur. J. Oper. Res..

[8]  Ward Whitt,et al.  Stabilizing performance in a service system with time-varying arrivals and customer feedback , 2017, Eur. J. Oper. Res..

[9]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[10]  Ward Whitt,et al.  Staffing of Time-Varying Queues to Achieve Time-Stable Performance , 2008, Manag. Sci..

[11]  Tahir Ekin,et al.  Integrated maintenance and production planning with endogenous uncertain yield , 2017, Reliab. Eng. Syst. Saf..

[12]  Charles Knessl,et al.  A subjective Bayesian approach to the theory of queues II—Inference and information in M/M/1 queues , 1987 .

[13]  Avishai Mandelbaum,et al.  Designing a Call Center with Impatient Customers , 2002, Manuf. Serv. Oper. Manag..

[14]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[15]  P. Müller,et al.  Optimal Bayesian Design by Inhomogeneous Markov Chain Simulation , 2004 .

[16]  M. J. Bayarri,et al.  Prior Assessments for Prediction in Queues , 1994 .

[17]  Pierre L'Ecuyer,et al.  Inter-dependent, heterogeneous, and time-varying service-time distributions in call centers , 2016, Eur. J. Oper. Res..

[18]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[19]  Ignacio E. Grossmann,et al.  A Class of stochastic programs with decision dependent uncertainty , 2006, Math. Program..

[20]  Itay Gurvich,et al.  Staffing Call Centers with Uncertain Demand Forecasts: A Chance-Constrained Optimization Approach , 2010, Manag. Sci..

[21]  Jason R. W. Merrick Bayesian Simulation and Decision Analysis: An Expository Survey , 2009, Decis. Anal..

[22]  François Baccelli,et al.  ON QUEUES WITH IMPATIENT CUSTOMERS. , 1981 .

[23]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[24]  J. Bernardo,et al.  Simulation-Based Optimal Design , 1999 .

[25]  Oualid Jouini,et al.  On the scheduling of operations in a chat contact center , 2019, Eur. J. Oper. Res..

[26]  Shane G. Henderson,et al.  Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods , 2008, Manag. Sci..

[27]  Paul Damien,et al.  Decision dependent stochastic processes , 2014, Eur. J. Oper. Res..

[28]  Refik Soyer,et al.  Modeling latent sources in call center arrival data , 2010, Eur. J. Oper. Res..

[29]  Avishai Mandelbaum,et al.  Statistical Analysis of a Telephone Call Center , 2005 .

[30]  P. Kolesar,et al.  The Pointwise Stationary Approximation for Queues with Nonstationary Arrivals , 1991 .

[31]  Efthymios G. Tsionas Bayesian inference for multivariate gamma distributions , 2004, Stat. Comput..

[32]  Steven Nahmias Queues with Impatient Customers , 2011 .

[33]  Refik Soyer,et al.  Bayesian modeling of abandonments in ticket queues , 2018 .

[34]  Tevfik Aktekin,et al.  Call center arrival modeling: A Bayesian state‐space approach , 2011 .

[35]  Tevfik Aktekin,et al.  Bayesian analysis of queues with impatient customers: Applications to call centers , 2012 .

[36]  D. Parkinson,et al.  A Nested Sampling Algorithm for Cosmological Model Selection , 2005, astro-ph/0508461.

[37]  Simon P. Wilson,et al.  Bayesian inference for double Pareto lognormal queues , 2010, 1011.3411.

[38]  C. Bielza,et al.  Decision Analysis by Augmented Probability Simulation , 1999 .

[39]  Tevfik Aktekin,et al.  Call center service process analysis: Bayesian parametric and semi-parametric mixture modeling , 2014, Eur. J. Oper. Res..

[40]  Tevfik Aktekin,et al.  Bayesian Analysis of Abandonment in Call Center Operations , 2014 .

[41]  Nicholas G. Polson,et al.  Augmented nested sampling for stochastic programs with recourse and endogenous uncertainty , 2017 .

[42]  Tito Homem-de-Mello,et al.  Monte Carlo sampling-based methods for stochastic optimization , 2014 .

[43]  Tahir Ekin,et al.  Augmented Markov Chain Monte Carlo Simulation for Two-Stage Stochastic Programs with Recourse , 2014, Decis. Anal..

[44]  Tahir Ekin,et al.  Stochastic call center staffing with uncertain arrival, service and abandonment rates: A Bayesian perspective , 2016 .

[45]  Ward Whitt,et al.  Server Staffing to Meet Time-Varying Demand , 1996 .

[46]  Che-Lin Su,et al.  Structural Estimation of Callers' Delay Sensitivity in Call Centers , 2013, Manag. Sci..

[47]  Avishai Mandelbaum,et al.  Staffing Many-Server Queues with Impatient Customers: Constraint Satisfaction in Call Centers , 2009, Oper. Res..

[48]  Itay Gurvich,et al.  Service-Level Differentiation in Call Centers with Fully Flexible Servers , 2008, Manag. Sci..

[49]  Ioannis Dimitriou,et al.  A two-class queueing system with constant retrial policy and general class dependent service times , 2018, Eur. J. Oper. Res..