The role of intestinal flora on tumor immunotherapy: recent progress and treatment implications

[1]  G. Freeman,et al.  Targeting PD-L2–RGMb overcomes microbiome-related immunotherapy resistance , 2023, Nature.

[2]  Stacy L. Gelhaus,et al.  Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment , 2023, Cell.

[3]  Yongxiang Xia,et al.  Macrophage GSK3β-deficiency inhibits the progression of hepatocellular carcinoma and enhances the sensitivity of anti-PD1 immunotherapy , 2022, Journal for ImmunoTherapy of Cancer.

[4]  M. Caligiuri,et al.  The emerging field of oncolytic virus-based cancer immunotherapy. , 2022, Trends in cancer.

[5]  Tao Zhang,et al.  Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. , 2022, Cell host & microbe.

[6]  E. Le Chatelier,et al.  Low-dose IL-2 shapes a tolerogenic gut microbiota that improves autoimmunity and gut inflammation , 2022, JCI insight.

[7]  Cody N. Heiser,et al.  Human Colon Cancer–Derived Clostridioides difficile Strains Drive Colonic Tumorigenesis in Mice , 2022, Cancer discovery.

[8]  J. Sun,et al.  Boarding Oncolytic Viruses onto Tumor-Homing Bacterium-Vessels for Augmented Cancer Immunotherapy. , 2022, Nano letters.

[9]  Mingyao Li,et al.  β-Hydroxybutyrate suppresses colorectal cancer , 2022, Nature.

[10]  Jun Yu,et al.  Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes , 2022, Gut.

[11]  Mikhail G. Shapiro,et al.  A gut-derived metabolite alters brain activity and anxiety behaviour in mice , 2022, Nature.

[12]  E. Le Chatelier,et al.  A Natural Polyphenol Exerts Antitumor Activity and Circumvents Anti–PD-1 Resistance through Effects on the Gut Microbiota , 2022, Cancer discovery.

[13]  Jibiao Wu,et al.  PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy , 2021, Frontiers in Pharmacology.

[14]  Jie Hong,et al.  Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosomes-packaged miR-149-3p. , 2021, Gastroenterology.

[15]  G. Eberl,et al.  Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer , 2021, Cell.

[16]  H. Sokol,et al.  Butyrate, a new microbiota-dependent player in CD8+ T cells immunity and cancer therapy? , 2021, Cell reports. Medicine.

[17]  P. Libby,et al.  Interleukins in cancer: from biology to therapy , 2021, Nature Reviews Cancer.

[18]  J. Hasty,et al.  The microbiome and human cancer , 2021, Science.

[19]  Cheng-Bei Zhou,et al.  Gut Microbiota in Cancer Immune Response and Immunotherapy. , 2021, Trends in cancer.

[20]  Wei Liu,et al.  The Intestinal Microbiome Primes Host Innate Immunity against Enteric Virus Systemic Infection through Type I Interferon , 2021, mBio.

[21]  N. Ajami,et al.  Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients , 2020, Science.

[22]  N. Ajami,et al.  Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade , 2020, Nature Medicine.

[23]  Ying Yang,et al.  Immunomodulatory Effects of IL-2 and IL-15; Implications for Cancer Immunotherapy , 2020, Cancers.

[24]  A. Iwasaki,et al.  Commensal Microbiota Modulation of Natural Resistance to Virus Infection , 2020, Cell.

[25]  Patrice D Cani,et al.  Mucus barrier, mucins and gut microbiota: the expected slimy partners? , 2020, Gut.

[26]  Qifeng Chen,et al.  Clinical Implications of Aberrant PD-1 and CTLA4 Expression for Cancer Immunity and Prognosis: A Pan-Cancer Study , 2020, Frontiers in Immunology.

[27]  K. McCoy,et al.  Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy , 2020, Science.

[28]  Zemin Zhang,et al.  The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications , 2020, Cellular & Molecular Immunology.

[29]  E. Elinav,et al.  Interaction between microbiota and immunity in health and disease , 2020, Cell Research.

[30]  M. Sommer,et al.  Predictable modulation of cancer treatment outcomes by the gut microbiota , 2020, Microbiome.

[31]  A. Need,et al.  Mutational signature in colorectal cancer caused by genotoxic pks+E. coli , 2020, Nature.

[32]  Z. Modrušan,et al.  Blockade of the Phagocytic Receptor MerTK on Tumor-Associated Macrophages Enhances P2X7R-Dependent STING Activation by Tumor-Derived cGAMP. , 2020, Immunity.

[33]  B. Baradaran,et al.  CTLA-4: From mechanism to autoimmune therapy. , 2020, International immunopharmacology.

[34]  Xi Yang,et al.  Gut Microbiome as a Potential Factor for Modulating Resistance to Cancer Immunotherapy , 2020, Frontiers in Immunology.

[35]  Deepjyoti K Das,et al.  Potential Role of Gut Microbiota in Induction and Regulation of Innate Immune Memory , 2019, Front. Immunol..

[36]  I. Osman,et al.  Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients , 2019, Genome Medicine.

[37]  S. Qin,et al.  Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity , 2019, Journal of immunology research.

[38]  J. Schellens,et al.  Multiparameter Flow Cytometry Assay for Quantification of Immune Cell Subsets, PD‐1 Expression Levels and PD‐1 Receptor Occupancy by Nivolumab and Pembrolizumab , 2019, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[39]  Arash Salmaninejad,et al.  PD‐1/PD‐L1 pathway: Basic biology and role in cancer immunotherapy , 2019, Journal of cellular physiology.

[40]  K. Syrigos,et al.  Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. , 2019, The New England journal of medicine.

[41]  C. Brock,et al.  Association of Prior Antibiotic Treatment With Survival and Response to Immune Checkpoint Inhibitor Therapy in Patients With Cancer. , 2019, JAMA oncology.

[42]  G. D'Haens,et al.  Fecal Microbial Transplantation For Diseases Beyond Recurrent Clostridium Difficile Infection. , 2019, Gastroenterology.

[43]  Yueping Jin,et al.  The Diversity of Gut Microbiome is Associated With Favorable Responses to Anti-Programmed Death 1 Immunotherapy in Chinese Patients With NSCLC. , 2019, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[44]  Jun Yu,et al.  Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity , 2019, Nature Microbiology.

[45]  Xin Wang,et al.  Treatment-Related Adverse Events of PD-1 and PD-L1 Inhibitors in Clinical Trials: A Systematic Review and Meta-analysis. , 2019, JAMA oncology.

[46]  K. Shannon,et al.  Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. , 2019, The Lancet. Oncology.

[47]  Gaochao Dong,et al.  Gut Microbiota Shapes the Efficiency of Cancer Therapy , 2019, Front. Microbiol..

[48]  D. Plichta,et al.  Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis , 2019, Science.

[49]  T. Jiang,et al.  Antibiotics are associated with attenuated efficacy of anti-PD-1/PD-L1 therapies in Chinese patients with advanced non-small cell lung cancer. , 2019, Lung cancer.

[50]  Paul Theodor Pyl,et al.  Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer , 2019, Nature Medicine.

[51]  B. Helmink,et al.  The microbiome, cancer, and cancer therapy , 2019, Nature Medicine.

[52]  Jaw-Yuan Wang,et al.  Fecal microbiota transplantation: Review and update. , 2019, Journal of the Formosan Medical Association = Taiwan yi zhi.

[53]  Paul D. Boudreau,et al.  The human gut bacterial genotoxin colibactin alkylates DNA , 2019, Science.

[54]  Robert D. Finn,et al.  A new genomic blueprint of the human gut microbiota , 2019, Nature.

[55]  J. McQuade,et al.  Modulating the microbiome to improve therapeutic response in cancer. , 2019, The Lancet. Oncology.

[56]  Jean-David Fumet,et al.  Tim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1 blockade in lung cancer patients , 2019, Oncoimmunology.

[57]  D. Plichta,et al.  A defined commensal consortium elicits CD8 T cells and anti-cancer immunity , 2019, Nature.

[58]  Bangmao Wang,et al.  Fecal microbiota transplantation in cancer management: Current status and perspectives , 2018, International journal of cancer.

[59]  T. Waldmann Cytokines in Cancer Immunotherapy. , 2018, Cold Spring Harbor perspectives in biology.

[60]  Shasha Liu,et al.  Fates of CD8+ T cells in Tumor Microenvironment , 2018, Computational and structural biotechnology journal.

[61]  Kongming Wu,et al.  The role of gut microbiota in immune checkpoint inhibitor therapy. , 2018, Hepatobiliary surgery and nutrition.

[62]  B. Helmink,et al.  Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis , 2018, Nature Medicine.

[63]  D. Schadendorf,et al.  Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. , 2018, The Lancet. Oncology.

[64]  Y. Shigematsu,et al.  Gut microbiome: a key player in cancer immunotherapy. , 2018, Hepatobiliary surgery and nutrition.

[65]  E. Winer,et al.  Atezolizumab and Nab‐Paclitaxel in Advanced Triple‐Negative Breast Cancer , 2018, The New England journal of medicine.

[66]  Rong Xu,et al.  Immunotherapy-related adverse events (irAEs): extraction from FDA drug labels and comparative analysis , 2018, JAMIA open.

[67]  Farlan S Veraitch,et al.  A guide to manufacturing CAR T cell therapies. , 2018, Current opinion in biotechnology.

[68]  K. Hargadon,et al.  Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. , 2018, International immunopharmacology.

[69]  J. Chaft,et al.  Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. , 2018, The New England journal of medicine.

[70]  Ruurd van der Zee,et al.  Lactobacillus rhamnosus GG-Derived Soluble Mediators Modulate Adaptive Immune Cells , 2018, Front. Immunol..

[71]  Zu-hua Gao,et al.  The risk of immune‐related endocrine disorders associated with anti‐PD‐1 inhibitors therapy for solid tumors: A systematic review and meta‐analysis , 2018, International immunopharmacology.

[72]  S. Novello,et al.  Pembrolizumab plus Chemotherapy in Metastatic Non–Small‐Cell Lung Cancer , 2018, The New England journal of medicine.

[73]  K. Kristiansen,et al.  Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers , 2018, Microbiome.

[74]  B. Helmink,et al.  The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. , 2018, Cancer cell.

[75]  G. Coppola,et al.  Microbiota effects on cancer: from risks to therapies , 2018, Oncotarget.

[76]  Laurence Zitvogel,et al.  The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies , 2018, Science.

[77]  Laurence Zitvogel,et al.  Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors , 2018, Science.

[78]  E. Le Chatelier,et al.  Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients , 2018, Science.

[79]  Riyue Bao,et al.  The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients , 2018, Science.

[80]  D. Sansom,et al.  CTLA-4: a moving target in immunotherapy. , 2018, Blood.

[81]  N. Câmara,et al.  Intestinal barrier and gut microbiota: Shaping our immune responses throughout life , 2017, Tissue barriers.

[82]  E. Frenkel,et al.  Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma Patients , 2017, Neoplasia.

[83]  C. Buchholz,et al.  Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts , 2017, EMBO molecular medicine.

[84]  Fangfang Guo,et al.  Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy , 2017, Cell.

[85]  S. Ryu,et al.  Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab , 2017, Scientific Reports.

[86]  J. Ugalde,et al.  The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia , 2017, Front. Microbiol..

[87]  L. Zitvogel,et al.  Anticancer effects of the microbiome and its products , 2017, Nature Reviews Microbiology.

[88]  G. Lauwers,et al.  Histopathologic Features of Colitis Due to Immunotherapy With Anti-PD-1 Antibodies , 2017, The American journal of surgical pathology.

[89]  K. Breckpot,et al.  PD1 signal transduction pathways in T cells , 2017, Oncotarget.

[90]  M. Smyth,et al.  Targeting cancer‐related inflammation in the era of immunotherapy , 2017, Immunology and Cell Biology.

[91]  Thierry Hennet,et al.  Mechanisms and consequences of intestinal dysbiosis , 2017, Cellular and Molecular Life Sciences.

[92]  Soumen Roy,et al.  Microbiota: a key orchestrator of cancer therapy , 2017, Nature Reviews Cancer.

[93]  Sean C. Bendall,et al.  Systemic Immunity Is Required for Effective Cancer Immunotherapy , 2017, Cell.

[94]  R. Bresalier,et al.  Gastrointestinal and Hepatic Complications of Immune Checkpoint Inhibitors , 2017, Current Gastroenterology Reports.

[95]  I. Puzanov,et al.  Talimogene Laherparepvec in Combination With Ipilimumab in Previously Untreated, Unresectable Stage IIIB-IV Melanoma. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[96]  K. Honda,et al.  The microbiota in adaptive immune homeostasis and disease , 2016, Nature.

[97]  Laura M Cox,et al.  Alterations of the human gut microbiome in multiple sclerosis , 2016, Nature Communications.

[98]  Krishna R. Kalari,et al.  Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls , 2016, Scientific Reports.

[99]  P. Kim,et al.  Frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma , 2016, Haematologica.

[100]  W. Garrett,et al.  Gut microbiota, metabolites and host immunity , 2016, Nature Reviews Immunology.

[101]  G. Trinchieri,et al.  The role of microbiota in cancer therapy. , 2016, Current opinion in immunology.

[102]  S. Erdman,et al.  Beneficial bacteria inhibit cachexia , 2016, Oncotarget.

[103]  J. Soria,et al.  Immune-related adverse events with immune checkpoint blockade: a comprehensive review. , 2016, European journal of cancer.

[104]  E. Buchbinder,et al.  CTLA-4 and PD-1 Pathways , 2016, American journal of clinical oncology.

[105]  R. Milo,et al.  Revised Estimates for the Number of Human and Bacteria Cells in the Body , 2016, bioRxiv.

[106]  Z. Eshhar,et al.  Therapeutic Potential of T Cell Chimeric Antigen Receptors (CARs) in Cancer Treatment: Counteracting Off-Tumor Toxicities for Safe CAR T Cell Therapy. , 2016, Annual review of pharmacology and toxicology.

[107]  Jason B. Williams,et al.  Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy , 2015, Science.

[108]  F. Ginhoux,et al.  Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota , 2015, Science.

[109]  B. Bohannan,et al.  Individual Members of the Microbiota Disproportionately Modulate Host Innate Immune Responses. , 2015, Cell host & microbe.

[110]  A. Ravaud,et al.  Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. , 2015, The New England journal of medicine.

[111]  A. Ribas Releasing the Brakes on Cancer Immunotherapy. , 2015, The New England journal of medicine.

[112]  T. Barnetche,et al.  Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis , 2015, BMC Medicine.

[113]  A. Ribas Adaptive Immune Resistance: How Cancer Protects from Immune Attack. , 2015, Cancer Discovery.

[114]  G. Gerber,et al.  MyD88 Adaptor-Dependent Microbial Sensing by Regulatory T Cells Promotes Mucosal Tolerance and Enforces Commensalism. , 2015, Immunity.

[115]  Ashley M. Zehnder,et al.  Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2 , 2015, Nature Genetics.

[116]  C. Klein,et al.  Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors , 2015, Cancer Immunology Research.

[117]  Richard A Flavell,et al.  Immune-microbiota interactions in health and disease. , 2015, Clinical immunology.

[118]  S. Erdman,et al.  Gut bacteria and cancer. , 2015, Biochimica et biophysica acta.

[119]  J. Rojas,et al.  Defining Effective Combinations of Immune Checkpoint Blockade and Oncolytic Virotherapy , 2015, Clinical Cancer Research.

[120]  J. E. Brewer,et al.  NY-ESO-1 specific TCR engineered T-cells mediate sustained antigen-specific antitumor effects in myeloma , 2015, Nature Medicine.

[121]  L. Zitvogel,et al.  Type I interferons in anticancer immunity , 2015, Nature Reviews Immunology.

[122]  G. Linette,et al.  Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[123]  E. Zoetendal,et al.  Fecal microbiota transplantation as novel therapy in gastroenterology: A systematic review. , 2015, World journal of gastroenterology.

[124]  P. Sharma,et al.  Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential , 2015, Cell.

[125]  P. Sharma,et al.  The future of immune checkpoint therapy , 2015, Science.

[126]  S. Rosenberg,et al.  Adoptive cell transfer as personalized immunotherapy for human cancer , 2015, Science.

[127]  E. Pekkonen,et al.  Gut microbiota are related to Parkinson's disease and clinical phenotype , 2015, Movement disorders : official journal of the Movement Disorder Society.

[128]  I. Melero,et al.  Virotherapy with a Semliki Forest Virus–Based Vector Encoding IL12 Synergizes with PD-1/PD-L1 Blockade , 2015, Cancer Immunology Research.

[129]  S. Jonjić,et al.  Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. , 2015, Immunity.

[130]  S. Steinberg,et al.  T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial , 2015, The Lancet.

[131]  D. Schadendorf,et al.  Nivolumab in previously untreated melanoma without BRAF mutation. , 2015, The New England journal of medicine.

[132]  Zhiguang Zhou,et al.  Human Cancer Immunotherapy with PD-1/PD-L1 Blockade , 2015, Biomarkers in cancer.

[133]  Winnie S. Liang,et al.  Personalized treatment of Sézary syndrome by targeting a novel CTLA4:CD28 fusion , 2014, Molecular genetics & genomic medicine.

[134]  C. Mackay,et al.  Diet, metabolites, and "western-lifestyle" inflammatory diseases. , 2014, Immunity.

[135]  H. Deshmukh,et al.  The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice , 2014, Nature Medicine.

[136]  David C. Smith,et al.  Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[137]  D. Schadendorf,et al.  Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma , 2014, Nature.

[138]  N. Câmara,et al.  Intestinal barrier: A gentlemen's agreement between microbiota and immunity. , 2014, World journal of gastrointestinal pathophysiology.

[139]  E. Alm,et al.  Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice , 2013, International journal of cancer.

[140]  Max Nieuwdorp,et al.  Therapeutic potential of fecal microbiota transplantation. , 2013, Gastroenterology.

[141]  M. Meyerson,et al.  Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. , 2013, Cell host & microbe.

[142]  M. R. Rubinstein,et al.  Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. , 2013, Cell host & microbe.

[143]  I. Mellman,et al.  Oncology meets immunology: the cancer-immunity cycle. , 2013, Immunity.

[144]  S. Lang,et al.  Modulation of neutrophil granulocytes in the tumor microenvironment: mechanisms and consequences for tumor progression. , 2013, Seminars in cancer biology.

[145]  Lieping Chen,et al.  Molecular mechanisms of T cell co-stimulation and co-inhibition , 2013, Nature Reviews Immunology.

[146]  D. Frank,et al.  The role of the intestinal microbiota in type 1 diabetes. , 2013, Clinical immunology.

[147]  E. Zoetendal,et al.  Duodenal infusion of donor feces for recurrent Clostridium difficile. , 2013, The New England journal of medicine.

[148]  P. Kuo,et al.  The tumor microenvironment. , 2012, Surgical oncology.

[149]  David C. Smith,et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. , 2012, The New England journal of medicine.

[150]  Drew M. Pardoll,et al.  The blockade of immune checkpoints in cancer immunotherapy , 2012, Nature Reviews Cancer.

[151]  P. Sansonetti,et al.  Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium's epithelial niche. , 2012, Cell host & microbe.

[152]  Rodney D. Newberry,et al.  Goblet cells deliver luminal antigen to CD103+ DCs in the small intestine , 2012, Nature.

[153]  P. Woster,et al.  Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis , 2011, Proceedings of the National Academy of Sciences.

[154]  A. Velcich,et al.  Importance and regulation of the colonic mucus barrier in a mouse model of colitis. , 2011, American journal of physiology. Gastrointestinal and liver physiology.

[155]  M. Tokunaga,et al.  Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. , 2010, Immunity.

[156]  J. Stenvang,et al.  MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. , 2010, The Journal of allergy and clinical immunology.

[157]  Baoli Zhu,et al.  Human gut microbiome: the second genome of human body , 2010, Protein & Cell.

[158]  D. Schadendorf,et al.  Improved survival with ipilimumab in patients with metastatic melanoma. , 2010, The New England journal of medicine.

[159]  S. Erdman,et al.  Cancer inflammation and regulatory T cells , 2010, International journal of cancer.

[160]  S. Mazmanian,et al.  Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota , 2010, Proceedings of the National Academy of Sciences.

[161]  J. Fox,et al.  Unifying roles for regulatory T cells and inflammation in cancer , 2010, International journal of cancer.

[162]  A. Macpherson,et al.  Immune adaptations that maintain homeostasis with the intestinal microbiota , 2010, Nature Reviews Immunology.

[163]  D. Littman,et al.  Segmented filamentous bacteria take the stage , 2010, Mucosal Immunology.

[164]  Jeffrey N. Weiser,et al.  Recognition of Peptidoglycan from the Microbiota by Nod1 Enhances Systemic Innate Immunity , 2010, Nature Medicine.

[165]  S. Perez,et al.  Cancer immunotherapy , 2009, Critical reviews in clinical laboratory sciences.

[166]  B. Finlay,et al.  Antibiotic-Induced Perturbations of the Intestinal Microbiota Alter Host Susceptibility to Enteric Infection , 2008, Infection and Immunity.

[167]  M. Russell,et al.  Tissue distribution of lymphocytes and plasma cells and the role of the gut. , 2008, Trends in immunology.

[168]  A. J. Wilson,et al.  Induction of the CTLA-4 Gene in Human Lymphocytes Is Dependent on NFAT Binding the Proximal Promoter1 , 2007, The Journal of Immunology.

[169]  H. Aburatani,et al.  Helicobacter pylori CagA interacts with E-cadherin and deregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells , 2007, Oncogene.

[170]  A. Rudensky,et al.  Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells , 2007, Nature.

[171]  J. Fox,et al.  Breast cancer: should gastrointestinal bacteria be on our radar screen? , 2007, Cancer research.

[172]  J. Meijerink,et al.  Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. , 2006, Gastroenterology.

[173]  L. Platanias Mechanisms of type-I- and type-II-interferon-mediated signalling , 2005, Nature Reviews Immunology.

[174]  A. Macpherson,et al.  Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria , 2004, Science.

[175]  I. Wilson,et al.  Understanding 'Global' Systems Biology: Metabonomics and the Continuum of Metabolism , 2003, Nature Reviews Drug Discovery.

[176]  M. Kalos Tumor antigen-specific T cells and cancer immunotherapy: current issues and future prospects. , 2003, Vaccine.

[177]  J. Dekker,et al.  Fate of Goblet Cells in Experimental Colitis , 2002, Digestive Diseases and Sciences.

[178]  G. Freeman,et al.  The B7–CD28 superfamily , 2002, Nature Reviews Immunology.

[179]  J. Egen,et al.  CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. , 2001, Annual review of immunology.

[180]  N. Packer,et al.  Studies on the “Insoluble” Glycoprotein Complex from Human Colon , 1999, The Journal of Biological Chemistry.

[181]  H. Griesser,et al.  Lymphoproliferative Disorders with Early Lethality in Mice Deficient in Ctla-4 , 1995, Science.

[182]  J. Bluestone,et al.  Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. , 1995, Immunity.

[183]  C. Thompson,et al.  CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. , 1995, Immunity.

[184]  K. Sakaguchi,et al.  Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[185]  P. Romero,et al.  Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes , 1994, The Journal of experimental medicine.

[186]  P. Chomez,et al.  A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. , 1991, Science.

[187]  C. Thompson,et al.  Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. , 1989, Science.

[188]  S. Rosenberg,et al.  Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. , 1988, The New England journal of medicine.

[189]  S. Rosenberg,et al.  A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. , 1986, Science.

[190]  A. Chang,et al.  Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. , 1985, The New England journal of medicine.

[191]  S. Rosenberg,et al.  Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2 , 1985, The Journal of experimental medicine.

[192]  J. Kochenderfer,et al.  Chimeric antigen receptor T-cell therapies for lymphoma , 2018, Nature Reviews Clinical Oncology.

[193]  G. Weiner,et al.  Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. , 2015, Cancer research.

[194]  D I Stuart,et al.  Structure and dimerization of a soluble form of B7-1. , 2000, Immunity.

[195]  M Aguet,et al.  The IFN gamma receptor: a paradigm for cytokine receptor signaling. , 1997, Annual review of immunology.