Numerical Aspects of Nonlinear Flexible Aircraft Flight Dynamics Modeling

craft dynamics modeling is presented. The baseline model is a geometricallyexact composite beam model describing the exible-body dynamics which are subject to aerodynamic forces predicted using the unsteady vortexlattice method (UVLM). The objectivity of the beam formulation is rst investigated for static problems with large nodal rotations. It is found that errors associated with non-objectivity of the formulation are minimized to negligible levels using quadratic (3-noded) elements. In addition to this, two force calculation methods are presented and compared for the UVLM. They show subtle but important dierences when applied to unsteady aero

[1]  Mayuresh J. Patil,et al.  Time Domain Nonlinear Aeroelastic Analysis for HALE Wings , 2006 .

[2]  S. Pesmajoglou,et al.  Prediction of aerodynamic forces on horizontal axis wind turbines in free yaw and turbulence , 2000 .

[3]  O. Bauchau,et al.  Interpolation of finite rotations in flexible multi-body dynamics simulations , 2008 .

[4]  E. ALBANO,et al.  A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. , 1969 .

[5]  Zhang Jian,et al.  Nonlinear Aeroelastic Response of High-aspect-ratio Flexible Wings , 2009 .

[6]  Carlos E. S. Cesnik,et al.  Nonlinear Aeroelasticity and Flight Dynamics of High-Altitude Long-Endurance Aircraft , 2001 .

[7]  W. Rodden,et al.  A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. , 1969 .

[8]  Carlos E. S. Cesnik,et al.  Nonlinear Aeroelastic Analysis of Complete Aircraft in Subsonic Flow , 2000 .

[9]  Carlos E. S. Cesnik,et al.  Dynamic Response of Highly Flexible Flying Wings , 2011 .

[10]  M. Crisfield,et al.  Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[12]  I. E. Garrick Propulsion of a flapping and oscillating airfoil , 1936 .

[13]  Alexander H. Boschitsch,et al.  FAST LIFTING PANEL METHOD , 1999 .

[14]  D. Peters Two-dimensional incompressible unsteady airfoil theory—An overview , 2008 .

[15]  Kenneth T. Moore,et al.  A Standard Platform for Testing and Comparison of MDAO Architectures , 2012 .

[16]  Jacob K. White,et al.  A combined pFFT‐multipole tree code, unsteady panel method with vortex particle wakes , 2007 .

[17]  Bret Stanford,et al.  Analytical Sensitivity Analysis of an Unsteady Vortex Lattice Method for Flapping Wing Optimization , 2009 .

[18]  Joseba Murua,et al.  Induced-Drag Calculations in the Unsteady Vortex Lattice Method , 2013 .

[19]  Dean T. Mook,et al.  Numerical simulation of steady and unsteady, vorticity-dominated aerodynamic interference , 1994 .

[20]  Peretz P. Friedmann,et al.  Approximate Aeroelastic Modeling of Flapping Wings in Hover , 2013 .

[21]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[22]  D. Hodges A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams , 1990 .

[23]  Joseba Murua,et al.  Structural and Aerodynamic Models in Nonlinear Flight Dynamics of Very Flexible Aircraft , 2010 .

[24]  Joseba Murua,et al.  Assessment of Wake-Tail Interference Effects on the Dynamics of Flexible Aircraft , 2012 .

[25]  Bret Stanford,et al.  Formulation of Analytical Design Derivatives for Nonlinear Unsteady Aeroelasticity , 2010 .

[26]  Dewey H. Hodges,et al.  On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings $ , 2004 .

[27]  Joseba Murua,et al.  'Flexible aircraft dynamics with a geometrically-nonlinear description of the unsteady aerodynamics' , 2012 .

[28]  Joseba Murua,et al.  Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics , 2012 .

[29]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[30]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[31]  Henrik Hesse,et al.  Consistent structural linearisation in flexible-body dynamics with large rigid-body motion , 2012 .

[32]  Giovanni Bernardini,et al.  Singularities in BIEs for the Laplace equation; Joukowski trailing-edge conjecture revisited , 2001 .

[33]  Joaquim R. R. A. Martins,et al.  pyMDO: An Object-Oriented Framework for Multidisciplinary Design Optimization , 2009, TOMS.

[34]  Joaquim R. R. A. Martins,et al.  pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization , 2011, Structural and Multidisciplinary Optimization.

[35]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[36]  Dewey H. Hodges,et al.  CFD-BASED ANALYSIS OF NONLINEAR AEROELASTIC BEHAVIOR OF HIGH-ASPECT RATIO WINGS , 2001 .

[37]  Layne T. Watson,et al.  Multidisciplinary Design Optimization , 2009, Encyclopedia of Optimization.

[38]  Ilya Kolmanovsky,et al.  Gust Response Sensitivity Characteristics of Very Flexible Aircraft , 2012 .

[39]  Dean T. Mook,et al.  Nonlinear-Aerodynamics/Nonlinear-Structure Interaction Methodology for a High-Altitude Long-Endurance Wing , 2010 .

[40]  Carlos E. S. Cesnik,et al.  Nonlinear Flight Dynamics of Very Flexible Aircraft , 2005 .

[41]  Ramin Sedaghati,et al.  Corotational non‐linear analysis of thin plates and shells using a new shell element , 2007 .

[42]  J. Gordon Leishman,et al.  Unsteady lift of a flapped airfoil by indicial concepts , 1994 .