ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae.

[1]  C. Schardl,et al.  A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes , 1994, Plant Molecular Biology.

[2]  P. Karis Morphological phylogenetics of theAsteraceae-Asteroideae, with notes on character evolution , 1993, Plant Systematics and Evolution.

[3]  R. Nazar,et al.  A conserved core structure in the 18–25S rRNA intergenic region from tobacco, Nicotiana rustica , 1991, Plant Molecular Biology.

[4]  B. G. Baldwin,et al.  Nuclear rDNA Evidence for Major Lineages of Helenioid Heliantheae (Compositae) , 2009 .

[5]  R. Jansen,et al.  Systematic Implications of ndhF Sequence Variation in the Mutisieae (Asteraceae) , 2009 .

[6]  R. Gutell,et al.  The accuracy of ribosomal RNA comparative structure models. , 2002, Current opinion in structural biology.

[7]  A. Austin,et al.  Increased congruence does not necessarily indicate increased phylogenetic accuracy--the behavior of the incongruence length difference test in mixed-model analyses. , 2002, Systematic biology.

[8]  A. Susanna,et al.  Tribal and subtribal delimitation and phylogeny of the Cardueae (Asteraceae): a combined nuclear and chloroplast DNA analysis. , 2002, Molecular phylogenetics and evolution.

[9]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[10]  B. Payseur,et al.  Failure of the ILD to determine data combinability for slow loris phylogeny. , 2001, Systematic biology.

[11]  D. Hoyle,et al.  RNA sequence evolution with secondary structure constraints: comparison of substitution rate models using maximum-likelihood methods. , 2001, Genetics.

[12]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[13]  A. Lalev,et al.  Ribosomal RNA maturation in Schizosaccharomyces pombe is dependent on a large ribonucleoprotein complex of the internal transcribed spacer 1. , 2000, Journal of molecular biology.

[14]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[15]  B. G. Baldwin,et al.  Phylogenetic Placement of Pelucha and new Subtribes in Helenieae Sensu Stricto (Compositae) , 2000 .

[16]  K. Nixon The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis , 1999 .

[17]  B. Michot,et al.  Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. , 1999, Nucleic acids research.

[18]  M. Källersjö,et al.  Phylogenetic placement and circumscription of tribes Inuleae s. str. and Plucheeae (Asteraceae): evidence from sequences of chloroplast gene ndhF. , 1999, Molecular phylogenetics and evolution.

[19]  A. Lalev,et al.  Structural equivalence in the transcribed spacers of pre-rRNA transcripts in Schizosaccharomyces pombe. , 1999, Nucleic acids research.

[20]  R. Jansen,et al.  MOLECULAR SYSTEMATICS OF THE ASTERISCUS ALLIANCE (ASTERACEAE: INULEAE). I:EVIDENCE FROM THE INTERNAL TRANSCRIBED SPACERS OF NUCLEAR RIBOSOMAL DNA , 1999 .

[21]  J. Bachellerie,et al.  Evolutionarily conserved structural features in the ITS2 of mammalian pre-rRNAs and potential interactions with the snoRNA U8 detected by comparative analysis of new mouse sequences. , 1999, Nucleic acids research.

[22]  R. Jansen,et al.  Molecular evidence for an African origin of the Hawaiian endemic Hesperomannia (Asteraceae). , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Lalev,et al.  Conserved core structure in the internal transcribed spacer 1 of the Schizosaccharomyces pombe precursor ribosomal RNA. , 1998, Journal of molecular biology.

[24]  C. Greer,et al.  The structure of the ITS2-proximal stem is required for pre-rRNA processing in yeast. , 1998, RNA.

[25]  Trematode and Monogenean rRNA ITS2 Secondary Structures Support a Four-Domain Model , 1998, Journal of Molecular Evolution.

[26]  A. Coleman,et al.  Derivation of the Secondary Structure of the ITS-1 Transcript in Volvocales and its Taxonomic Correlations. , 1998, Protist.

[27]  J. Starr,et al.  Tribal Phylogeny of the Asteraceae Based on Two Non-Coding Chloroplast Sequences, the trnL Intron and trnL/trnF Intergenic Spacer , 1998 .

[28]  K. Bremer,et al.  East Gondwana ancestry of the sunflower alliance of families. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Coleman,et al.  The Internal Transcribed Spacer 2 Exhibits a Common Secondary Structure in Green Algae and Flowering Plants , 1997, Journal of Molecular Evolution.

[30]  M. Hershkovitz,et al.  Deep-level diagnostic value of the rDNA-ITS region. , 1996, Molecular biology and evolution.

[31]  M. Hershkovitz,et al.  Conservation patterns in angiosperm rDNA ITS2 sequences. , 1996, Nucleic acids research.

[32]  R. Gutell,et al.  Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. , 1996, Journal of molecular biology.

[33]  M. Donoghue,et al.  Erratum: The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny (Annals of the Missouri Botanical Garden (1995) 82 (247-277)) , 1996 .

[34]  R. Jansen,et al.  Phylogenetic Implications of rbcL and ITS Sequence Variation in the Berberidaceae , 1996 .

[35]  A. Gultyaev,et al.  Phylogenetic relationships inferred from the sequence and secondary structure of ITS1 rRNA in Albinaria and putative Isabellaria species (Gastropoda, Pulmonata, Clausiliidae). , 1995, Molecular phylogenetics and evolution.

[36]  R. Jansen,et al.  ndhF sequence evolution and the major clades in the sunflower family. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Planta,et al.  Evolutionarily conserved structural elements are critical for processing of Internal Transcribed Spacer 2 from Saccharomyces cerevisiae precursor ribosomal RNA. , 1995, Journal of molecular biology.

[38]  D Gautheret,et al.  Identification of base-triples in RNA using comparative sequence analysis. , 1995, Journal of molecular biology.

[39]  D. Tollervey,et al.  Birth of the snoRNPs: the evolution of RNase MRP and the eukaryotic pre-rRNA-processing system. , 1995, Trends in biochemical sciences.

[40]  K. Gardens,et al.  Advances in Compositae Systematics , 1995 .

[41]  Michael J. Sanderson,et al.  Erratum: The ITS Region of Nuclear Ribosomal DNAZ: A Valuable Source of Evidence on Angiosperm Phylogeny , 1995 .

[42]  C. Bult,et al.  TESTING SIGNIFICANCE OF INCONGRUENCE , 1994 .

[43]  R. Planta,et al.  Separate structural elements within internal transcribed spacer 1 of Saccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA. , 1994, Nucleic acids research.

[44]  R. Gutell,et al.  Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. , 1994, Microbiological reviews.

[45]  D. Herrin,et al.  A chloroplast group I intron undergoes the first step of reverse splicing into host cytoplasmic 5.8 S rRNA. Implications for intron-mediated RNA recombination, intron transposition and 5.8 S rRNA structure. , 1994, Journal of molecular biology.

[46]  K. Bremer,et al.  Asteraceae: Cladistics and Classification , 1994 .

[47]  E. Zimmer,et al.  Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of Ribosomal DNA in Winteraceae , 1993 .

[48]  D. Hillis,et al.  Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. , 1993, Molecular biology and evolution.

[49]  Carl R. Woese,et al.  4 Probing RNA Structure, Function, and History by Comparative Analysis , 1993 .

[50]  G. Stormo,et al.  Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. , 1992, Nucleic acids research.

[51]  J. Palmer,et al.  Phylogenetic Implications of rbcL Sequence Variation in the Asteraceae , 1992 .

[52]  T. Eriksson The systematic position of the Blepharispermum group (Asteraceae, Heliantheae) , 1991 .

[53]  J. Palmer,et al.  Phylogeny and character evolution in the Asteraceae based on chloroplast DNA restriction site mapping , 1991 .

[54]  A. Anderberg Taxonomy and phylogeny of the tribe Gnaphalieae , 1991 .

[55]  A. Anderberg Phylogeny and reclassification of the tribe Inuleae (Asteraceae) , 1989 .

[56]  M. Zuker On finding all suboptimal foldings of an RNA molecule. , 1989, Science.

[57]  M. Zuker Computer prediction of RNA structure. , 1989, Methods in enzymology.

[58]  K. Bremer TRIBAL INTERRELATIONSHIPS OF THE ASTERACEAE , 1987, Cladistics : the international journal of the Willi Hennig Society.

[59]  J. Palmer,et al.  A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[60]  B. Ganem RNA world , 1987, Nature.

[61]  R. Gutell,et al.  Secondary structure model for 23S ribosomal RNA. , 1981, Nucleic acids research.

[62]  R. Jansen,et al.  Chromosome counts of Compositae from Latin America , 1980 .