Manipulating Size of Li3V2(PO4)3 with Reduced Graphene Oxide: towards High-Performance Composite Cathode for Lithium Ion Batteries

[1]  A. Manthiram,et al.  Nanostructured Li3V2(PO4)3 cathode supported on reduced graphene oxide for lithium-ion batteries , 2013 .

[2]  Theodoros G. Soldatos,et al.  Correction: Corrigendum: Src activation by β-adrenoreceptors is a key switch for tumour metastasis , 2013, Nature Communications.

[3]  Lain-Jong Li,et al.  Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity , 2013, Nature Communications.

[4]  Haihui Wang,et al.  Li3V2(PO4)3@C/graphene composite with improved cycling performance as cathode material for lithium-ion batteries , 2013 .

[5]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[6]  J. Pinto,et al.  Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries , 2012 .

[7]  Lijuan Wang,et al.  High-rate cathode based on Li3V2(PO4)3/C composite material prepared via a glycine-assisted sol–gel method , 2011 .

[8]  J. Tu,et al.  Synthesis and improved electrochemical performances of porous Li3V2(PO4)3/C spheres as cathode material for lithium-ion batteries , 2011 .

[9]  Gang Yang,et al.  Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. , 2011, Chemical communications.

[10]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[11]  R. Ruoff,et al.  Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. , 2011, ACS nano.

[12]  Ji‐Guang Zhang,et al.  Nano-Structured Li3V2(PO4)3 /Carbon Composite for High Rate Lithium Ion Batteries , 2010 .

[13]  Wei Lv,et al.  Flexible and planar graphene conductive additives for lithium-ion batteries , 2010 .

[14]  C. Chen,et al.  Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material , 2010 .

[15]  Xianjun Zhu,et al.  Synthesis and performance of lithium vanadium phosphate as cathode materials for lithium ion batteries by a sol–gel method , 2008 .

[16]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[17]  P. Kamat,et al.  TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. , 2008, ACS nano.

[18]  Xueping Gao,et al.  Core−Shell Li3V2(PO4)3@C Composites as Cathode Materials for Lithium-Ion Batteries , 2008 .

[19]  S. Stankovich,et al.  Preparation and characterization of graphene oxide paper , 2007, Nature.

[20]  S. Pejovnik,et al.  Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4 / C Composites , 2005 .

[21]  L. Nazar,et al.  Electrochemical Property: Structure Relationships in Monoclinic Li3-yV2(PO4)3. , 2003 .

[22]  L. Nazar,et al.  Electrochemical property: Structure relationships in monoclinic Li(3-y)V2(PO4)3. , 2003, Journal of the American Chemical Society.

[23]  L. Nazar,et al.  Nanostructured Composites: A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries , 2002 .

[24]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[25]  Ji‐Guang Zhang,et al.  Nano-structured Li 3 V 2 ( PO 4 ) 3 / carbon composite for high-rate lithium-ion batteries , 2010 .

[26]  P. Thordarson,et al.  Gram-scale production of graphene based on solvothermal synthesis and sonication. , 2009, Nature nanotechnology.