Constrained trace-optimization of polynomials in freely noncommuting variables
暂无分享,去创建一个
Igor Klep | Janez Povh | J. Povh | I. Klep
[1] Igor Klep,et al. Connes' embedding conjecture and sums of hermitian squares , 2008 .
[2] Raúl E. Curto,et al. Solution of the Truncated Complex Moment Problem for Flat Data , 1996 .
[3] Jaka Cimpric,et al. A method for computing lowest eigenvalues of symmetric polynomial differential operators by semidefinite programming , 2009, 0906.2214.
[4] Claudio Procesi,et al. A non-commutative real Nullstellensatz and Hilbert's 17th problem , 1976 .
[5] Dmitry S. Kaliuzhnyi-Verbovetskyi,et al. Foundations of Free Noncommutative Function Theory , 2012, 1212.6345.
[6] Jiawang Nie,et al. The A-Truncated K -Moment Problem , 2012 .
[7] Claudio Procesi,et al. The invariant theory of n × n matrices , 1976 .
[8] Peter J Seiler,et al. SOSTOOLS and its control applications , 2005 .
[9] Claudio Procesi,et al. The invariant theory of ? matrices , 2017 .
[10] Igor Klep,et al. The tracial moment problem and trace-optimization of polynomials , 2013, Math. Program..
[11] 竹崎 正道. Theory of operator algebras , 2002 .
[12] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[13] Henry Wolkowicz,et al. Handbook of Semidefinite Programming , 2000 .
[14] Victoria Powers,et al. The moment problem for non-compact semialgebraic sets , 2001 .
[15] Masakazu Muramatsu,et al. SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .
[16] J. William Helton,et al. The convex Positivstellensatz in a free algebra , 2011, 1102.4859.
[17] J. William Helton,et al. Engineering Systems and Free Semi-Algebraic Geometry , 2009 .
[18] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[19] Igor Klep,et al. Values of noncommutative polynomials, Lie SkewIdeals and tracial Nullstellensätze , 2008, 0810.1774.
[20] J. Lasserre,et al. Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .
[21] R. Curto,et al. Flat Extensions of Positive Moment Matrices: Recursively Generated Relations , 1998 .
[22] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[23] J. William Helton,et al. Every convex free basic semi-algebraic set has an LMI representation , 2012 .
[24] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[25] Masakazu Kojima,et al. Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..
[26] Igor Klep,et al. Constrained Polynomial Optimization Problems with Noncommuting Variables , 2012, SIAM J. Optim..
[27] Shengyuan Xu,et al. A survey of linear matrix inequality techniques in stability analysis of delay systems , 2008, Int. J. Syst. Sci..
[28] Igor Klep,et al. NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials , 2011, Optim. Methods Softw..
[29] Hans D. Mittelmann,et al. An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..
[30] Stefano Pironio,et al. Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..
[31] Igor Klep,et al. The truncated tracial moment problem , 2010, 1001.3679.
[32] J. W. Helton,et al. A positivstellensatz for non-commutative polynomials , 2004 .
[33] Jiawang Nie,et al. The $${\mathcal {A}}$$A-Truncated $$K$$K-Moment Problem , 2012, Found. Comput. Math..
[34] M. Laurent. Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .
[35] Franz Rendl,et al. Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..
[36] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[37] Theworkof Alain Connes. CLASSIFICATION OF INJECTIVE FACTORS , 1981 .
[38] Didier Henrion,et al. GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..
[39] Tim Netzer,et al. Hyperbolic Polynomials and Generalized Clifford Algebras , 2012, Discret. Comput. Geom..
[40] A. Connes,et al. Classification of Injective Factors Cases II 1 , II ∞ , III λ , λ 1 , 1976 .
[41] Petter Brändén. Obstructions to determinantal representability , 2011 .
[42] M. Takesaki,et al. Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.
[43] Anton van den Hengel,et al. Semidefinite Programming , 2014, Computer Vision, A Reference Guide.
[44] J. Lasserre. Moments, Positive Polynomials And Their Applications , 2009 .