Constrained trace-optimization of polynomials in freely noncommuting variables

The study of matrix inequalities in a dimension-free setting is in the realm of free real algebraic geometry. In this paper we investigate constrained trace and eigenvalue optimization of noncommutative polynomials. We present Lasserre’s relaxation scheme for trace optimization based on semidefinite programming (SDP) and demonstrate its convergence properties. Finite convergence of this relaxation scheme is governed by flatness, i.e., a rank-preserving property for associated dual SDPs. If flatness is observed, then optimizers can be extracted using the Gelfand–Naimark–Segal construction and the Artin–Wedderburn theory verifying exactness of the relaxation. To enforce flatness we employ a noncommutative version of the randomization technique championed by Nie. The implementation of these procedures in our computer algebra system NCSOStoolsis presented and several examples are given to illustrate our results.

[1]  Igor Klep,et al.  Connes' embedding conjecture and sums of hermitian squares , 2008 .

[2]  Raúl E. Curto,et al.  Solution of the Truncated Complex Moment Problem for Flat Data , 1996 .

[3]  Jaka Cimpric,et al.  A method for computing lowest eigenvalues of symmetric polynomial differential operators by semidefinite programming , 2009, 0906.2214.

[4]  Claudio Procesi,et al.  A non-commutative real Nullstellensatz and Hilbert's 17th problem , 1976 .

[5]  Dmitry S. Kaliuzhnyi-Verbovetskyi,et al.  Foundations of Free Noncommutative Function Theory , 2012, 1212.6345.

[6]  Jiawang Nie,et al.  The A-Truncated K -Moment Problem , 2012 .

[7]  Claudio Procesi,et al.  The invariant theory of n × n matrices , 1976 .

[8]  Peter J Seiler,et al.  SOSTOOLS and its control applications , 2005 .

[9]  Claudio Procesi,et al.  The invariant theory of ? matrices , 2017 .

[10]  Igor Klep,et al.  The tracial moment problem and trace-optimization of polynomials , 2013, Math. Program..

[11]  竹崎 正道 Theory of operator algebras , 2002 .

[12]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[13]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[14]  Victoria Powers,et al.  The moment problem for non-compact semialgebraic sets , 2001 .

[15]  Masakazu Muramatsu,et al.  SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .

[16]  J. William Helton,et al.  The convex Positivstellensatz in a free algebra , 2011, 1102.4859.

[17]  J. William Helton,et al.  Engineering Systems and Free Semi-Algebraic Geometry , 2009 .

[18]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[19]  Igor Klep,et al.  Values of noncommutative polynomials, Lie SkewIdeals and tracial Nullstellensätze , 2008, 0810.1774.

[20]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[21]  R. Curto,et al.  Flat Extensions of Positive Moment Matrices: Recursively Generated Relations , 1998 .

[22]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[23]  J. William Helton,et al.  Every convex free basic semi-algebraic set has an LMI representation , 2012 .

[24]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[25]  Masakazu Kojima,et al.  Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..

[26]  Igor Klep,et al.  Constrained Polynomial Optimization Problems with Noncommuting Variables , 2012, SIAM J. Optim..

[27]  Shengyuan Xu,et al.  A survey of linear matrix inequality techniques in stability analysis of delay systems , 2008, Int. J. Syst. Sci..

[28]  Igor Klep,et al.  NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials , 2011, Optim. Methods Softw..

[29]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[30]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[31]  Igor Klep,et al.  The truncated tracial moment problem , 2010, 1001.3679.

[32]  J. W. Helton,et al.  A positivstellensatz for non-commutative polynomials , 2004 .

[33]  Jiawang Nie,et al.  The $${\mathcal {A}}$$A-Truncated $$K$$K-Moment Problem , 2012, Found. Comput. Math..

[34]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[35]  Franz Rendl,et al.  Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..

[36]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[37]  Theworkof Alain Connes CLASSIFICATION OF INJECTIVE FACTORS , 1981 .

[38]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[39]  Tim Netzer,et al.  Hyperbolic Polynomials and Generalized Clifford Algebras , 2012, Discret. Comput. Geom..

[40]  A. Connes,et al.  Classification of Injective Factors Cases II 1 , II ∞ , III λ , λ 1 , 1976 .

[41]  Petter Brändén Obstructions to determinantal representability , 2011 .

[42]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[43]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[44]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .