Patterns of evolution in the Archean and Proterozoic Eons

Problems of taphonomy and sampling adequacy hinder direct evolutionary interpretations of pattern in the Precambrian paleontological record; however, molecular studies of microbial phylogeny and comparative physiological and ecological investigations of living microorganisms can be combined with geological research to establish patterns of early evolution. The Late Proterozoic record of planktonic algae resembles those of Phanerozoic plants, animals, and microplankton in its patterns of diversification and turnover, as well as in the importance of major extinction events in shaping the course of evolution. Late Proterozoic eukaryotes thus appear to be discussable in terms of the macroevolutionary issues that have become central to Phanerozoic paleobiology. In contrast, evolutionary patterns in Precambrian prokaryotes appear to be different from those of plants and animals, a possible consequence of their differing systems of genetic organization and recombination.

[1]  H. Hofmann The mid-Proterozoic Little Dal macrobiota, Mackenzie Mountains, north-west Canada , 1985 .

[2]  A. Knoll The distribution and evolution of microbial life in the Late Proterozoic era. , 1985, Annual review of microbiology.

[3]  J. Lake,et al.  A new ribosome structure. , 1984, Science.

[4]  G. Vidal The oldest eukaryotic cells. , 1984, Scientific American.

[5]  C R Woese,et al.  The phylogeny of prokaryotes. , 1980, Microbiological sciences.

[6]  A. Knoll Microbiotas of the Late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard , 1984 .

[7]  H. Hartman,et al.  The origin of the eukaryotic cell. , 1984, Speculations in science and technology.

[8]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[9]  J. Rogers Split genetics: Introns in archaebacteria , 1983, Nature.

[10]  H. Krouse,et al.  The Start of Sulfur Oxidation in Continental Environments: About 2.2 x 109 Years Ago , 1983, Science.

[11]  Stanley M. Awramik,et al.  Filamentous fossil bacteria from the Archean of Western Australia , 1983 .

[12]  C. Woese,et al.  Putative introns in tRNA genes of prokaryotes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Lowe,et al.  Filamentous microfossils from the 3. 1-3. 5 billion year old Swaziland Supergroup, Barberton Mountainland, South Africa , 1983 .

[14]  A. Knoll Biological Interactions and Precambrian Eukaryotes , 1983 .

[15]  J. Hayes Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis , 1983 .

[16]  J. William Schopf,et al.  Earth's earliest biosphere : its origin and evolution , 1983 .

[17]  M. O. Dayhoff Evolutionary connections of biological kingdoms based on protein and nucleic acid sequence evidence , 1983 .

[18]  J. Rogers Introns in archaebacteria. , 1983, Nature.

[19]  C. Woese,et al.  Archaebacterial 5 S Ribosomal RNA , 1982 .

[20]  A. Knoll,et al.  Radiations and extinctions of plankton in the late Proterozoic and early Cambrian , 1982, Nature.

[21]  E. M. Cameron Sulphate and sulphate reduction in early Precambrian oceans , 1982 .

[22]  Carl R. Woese,et al.  Archaebacteria and Cellular Origins: An Overview , 1982 .

[23]  W. Doolittle,et al.  Has the endosymbiont hypothesis been proven? , 1982, Microbiological reviews.

[24]  F. Jacob The possible and the actual , 1982 .

[25]  D. Mauzerall,et al.  MOLECULAR HYDROGEN PRODUCTION BY UROPORPHYRIN AND COPROPORPHYRIN: A MODEL FOR THE ORIGIN OF PHOTOSYNTHETIC FUNCTION , 1981 .

[26]  K. Searcy,et al.  A MYCOPLASMA‐LIKE ARCHAEBACTERIUM POSSIBLY RELATED TO THE NUCLEUS AND CYTOPLASM OF EUKARYOTIC CELLS , 1981, Annals of the New York Academy of Sciences.

[27]  A. Knoll,et al.  Early proterozoic microfossils and penecontemporaneous quartz cementation in the sokoman iron formation, Canada. , 1981, Science.

[28]  L. Margulis Symbiosis in cell evolution: Life and its environment on the early earth , 1981 .

[29]  G Stephanopoulos,et al.  Microbial competition. , 1981, Science.

[30]  A. Knoll,et al.  Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden , 1980 .

[31]  W. Barker Ontogeny and phylogeny. , 1980, Archives of surgery.

[32]  L. V. Valen,et al.  The Archaebacteria and eukaryotic origins , 1980, Nature.

[33]  R. J. Horodyski Middle Proterozoic shale-facies microbiota from the lower Belt Supergroup, Little Belt Mountains, Montana , 1980 .

[34]  H. Gest THE EVOLUTION OF BIOLOGICAL ENERGY‐TRANSDUCING SYSTEMS , 1980 .

[35]  M. Ragan,et al.  Evolution of Biochemical Pathways: Evidence From Comparative Biochemistry , 1980 .

[36]  A. Knoll,et al.  Anatomy and taphonomy of a precambrian algal stromatolite , 1979 .

[37]  J. Sepkoski,et al.  A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria , 1979, Paleobiology.

[38]  Stanley M. Awramik,et al.  Stromatolite morphogenesis—progress and problems , 1979 .

[39]  H. Hofmann,et al.  Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada , 1979 .

[40]  J. Darnell Implications of RNA-RNA splicing in evolution of eukaryotic cells. , 1978, Science.

[41]  J. Sepkoski,et al.  A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders , 1978, Paleobiology.

[42]  G. Green,et al.  Phylogenetic affinities between eukaryotic cells and a thermophilic mycoplasma. , 1978, Bio Systems.

[43]  W. Ford Doolittle,et al.  Genes in pieces: were they ever together? , 1978, Nature.

[44]  M. O. Dayhoff,et al.  Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. , 1978, Science.

[45]  J. Schopf,et al.  The evolution of the earliest cells. , 1978, Scientific American.

[46]  A. Knoll,et al.  Archean microfossils showing cell division from the swaziland system of South Africa. , 1977, Science.

[47]  H. Hofmann On Aphebian stromatolites and Riphean stromatolite stratigraphy , 1977 .

[48]  S. Awramik,et al.  THE GUNFLINT MICROBIOTA , 1977 .

[49]  J. Schopf,et al.  Chitinozoans from the Late Precambrian Chuar Group of the Grand Canyon, Arizona , 1977, Science.

[50]  H. Hofmann The problematic fossil Chuaria from the Late Precambrian Uinta Mountain Group, Utah , 1977 .

[51]  J. Bertrand-Sarfati Columnar stromatolites from the Early Proterozoic Schmidtsdrift Formation, Northern Cape province, South Africa - Part I: systematic and diagnostic features , 1977 .

[52]  S. Golubić,et al.  Interpretation of Microbial Fossils with Special Reference to the Precambrian , 1977 .

[53]  George E. Fox,et al.  Comparative Cataloging of 16S Ribosomal Ribonucleic Acid: Molecular Approach to Procaryotic Systematics , 1977 .

[54]  H. Hofmann Precambrian microflora, Belcher Islands, Canada; significance and systematics , 1976 .

[55]  S. Stanley Fossil data and the Precambrian-Cambrian evolutionary transition , 1976 .

[56]  J. Donaldson Chapter 7.3 Aphebian Stromatolites in Canada: Implications for Stromatolite Zonation , 1976 .

[57]  R. McNutt The Early History of the Earth , 1975 .

[58]  T. D. Brock Lower pH Limit for the Existence of Blue-Green Algae: Evolutionary and Ecological Implications , 1973, Science.

[59]  J. Hall,et al.  Evolution of the prokaryotes. , 1971, Journal of theoretical biology.

[60]  S. Roscoe,et al.  The Huronian Supergroup North of Lake Huron , 1970 .

[61]  P. Cloud Atmospheric and hydrospheric evolution on the primitive earth. Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. , 1968, Science.

[62]  E S Barghoorn,et al.  Microorganisms from the Gunflint Chert: These structurally preserved Precambrian fossils from Ontario are the most ancient organisms known. , 1965, Science.

[63]  T. Morrison-Scott,et al.  Principles of Animal Taxonomy , 1962, Nature.