The Laplacian spectrum of a mixed graph
暂无分享,去创建一个
[1] LI Jiong-sheng. A Note on the Laplacian Eigenvalues , 2004 .
[2] Xiao-Dong Zhang,et al. On the Spectral Radius of Graphs with Cut Vertices , 2001, J. Comb. Theory, Ser. B.
[3] Jerrold W. Grossman,et al. Edge version of the matrix tree theorem for trees , 2000 .
[4] R. Bapat,et al. Generalized matrix tree theorem for mixed graphs , 1999 .
[5] L. S. Mel'nikov,et al. The edge chromatic number of a directed-mixed multigraph , 1999 .
[6] Leonid S. Melnikov,et al. The edge chromatic number of a directed/mixed multigraph , 1999, J. Graph Theory.
[7] R. Merris. A note on Laplacian graph eigenvalues , 1998 .
[8] Zhang Xiaodong,et al. A new upper bound for eigenvalues of the laplacian matrix of a graph , 1997 .
[9] B. Mohar. Some applications of Laplace eigenvalues of graphs , 1997 .
[10] Devadatta M. Kulkarni,et al. Algebraic graph theory without orientation , 1994 .
[11] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[12] R. Merris. Laplacian matrices of graphs: a survey , 1994 .
[13] Elwood S. Buffa,et al. Graph Theory with Applications , 1977 .
[14] J. A. Bondy,et al. Graph Theory with Applications , 1978 .