Visualizing the human connectome

Innovations in data visualization punctuate the landmark advances in human connectome research since its beginnings. From tensor glyphs for diffusion-weighted imaging, to advanced rendering of anatomical tracts, to more recent graph-based representations of functional connectivity data, many of the ways we have come to understand the human connectome are through the intuitive insight these visualizations enable. Nonetheless, several unresolved problems persist. For example, probabilistic tractography lacks the visual appeal of its deterministic equivalent, multimodal representations require extreme levels of data reduction, and rendering the full connectome within an anatomical space makes the contents cluttered and unreadable. In part, these challenges require compromises between several tensions that determine connectome visualization practice, such as prioritizing anatomic or connectomic information, aesthetic appeal or information content, and thoroughness or readability. To illustrate the ongoing negotiation between these priorities, we provide an overview of various visualization methods that have evolved for anatomical and functional connectivity data. We then describe interactive visualization tools currently available for use in research, and we conclude with concerns and developments in the presentation of connectivity results.

[1]  Adina L. Roskies Neuroimaging and Inferential Distance: The Perils of Pictures , 2010 .

[2]  E. Bullmore,et al.  Undirected graphs of frequency-dependent functional connectivity in whole brain networks , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  J. Pekar,et al.  MR color mapping of myelin fiber orientation. , 1991, Journal of computer assisted tomography.

[4]  Timothy E. J. Behrens,et al.  Just pretty pictures? What diffusion tractography can add in clinical neuroscience , 2006, Current opinion in neurology.

[5]  Adam J. Schwarz,et al.  Negative edges and soft thresholding in complex network analysis of resting state functional connectivity data , 2011, NeuroImage.

[6]  Gordon Kindlmann,et al.  Visualization and Analysis of Diffusion Tensor Fields , 2004 .

[7]  Jinglei Lv,et al.  Resting State fMRI-Guided Fiber Clustering , 2011, MICCAI.

[8]  O. Sporns,et al.  Network centrality in the human functional connectome. , 2012, Cerebral cortex.

[9]  M. P. van den Heuvel,et al.  Microstructural Organization of the Cingulum Tract and the Level of Default Mode Functional Connectivity , 2008, The Journal of Neuroscience.

[10]  J. Dumit Picturing Personhood: Brain Scans and Biomedical Identity , 2004 .

[11]  Jonathan D. Power,et al.  Functional Brain Networks Develop from a “Local to Distributed” Organization , 2009, PLoS Comput. Biol..

[12]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[13]  Olaf Sporns,et al.  From simple graphs to the connectome: Networks in neuroimaging , 2012, NeuroImage.

[14]  E. Tufte Beautiful Evidence , 2006 .

[15]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[16]  Yaroslav O. Halchenko,et al.  Open is Not Enough. Let's Take the Next Step: An Integrated, Community-Driven Computing Platform for Neuroscience , 2012, Front. Neuroinform..

[17]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[18]  Stephen M. Smith,et al.  The future of FMRI connectivity , 2012, NeuroImage.

[19]  Catie Chang,et al.  Time–frequency dynamics of resting-state brain connectivity measured with fMRI , 2010, NeuroImage.

[20]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[21]  Heidi Johansen-Berg,et al.  Tractography: Where Do We Go from Here? , 2011, Brain Connect..

[22]  M. Greicius,et al.  Resting-state functional connectivity reflects structural connectivity in the default mode network. , 2009, Cerebral cortex.

[23]  Hans-Peter Seidel,et al.  Estimating Crossing Fibers: A Tensor Decomposition Approach , 2008, IEEE Transactions on Visualization and Computer Graphics.

[24]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[25]  Dorit Merhof,et al.  The BundleExplorer: A Focus and Context Rendering Framework for Complex Fiber Distributions , 2012, VCBM.

[26]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[27]  Charl P. Botha,et al.  BrainCove: A Tool for Voxel-wise fMRI Brain Connectivity Visualization , 2012, VCBM.

[28]  Friedrich Leisch,et al.  Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis , 2002, COMPSTAT.

[29]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[30]  B. Marx The Visual Display of Quantitative Information , 1985 .

[31]  Daniel Mietchen,et al.  Effectively incorporating selected multimedia content into medical publications , 2011, BMC medicine.

[32]  R. Kahn,et al.  Functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain , 2009, Human brain mapping.

[33]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[34]  Ravi S. Menon,et al.  Resting‐state networks show dynamic functional connectivity in awake humans and anesthetized macaques , 2013, Human brain mapping.

[35]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[36]  Hans Knutsson,et al.  A GPU accelerated interactive interface for exploratory functional connectivity analysis of FMRI data , 2011, 2011 18th IEEE International Conference on Image Processing.

[37]  Alan Connelly,et al.  Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping , 2010, NeuroImage.

[38]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[39]  Alan D. Castel,et al.  Seeing is believing: The effect of brain images on judgments of scientific reasoning , 2008, Cognition.

[40]  Tuo Zhang,et al.  Resting State fMRI-guided Fiber Clustering: Methods and Applications , 2012, Neuroinformatics.

[41]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[42]  Simon B. Eickhoff,et al.  Evaluating a visualization of uncertainty in probabilistic tractography , 2010, Medical Imaging.

[43]  John D. Van Horn,et al.  Circular representation of human cortical networks for subject and population-level connectomic visualization , 2012, NeuroImage.

[44]  Dominik Heider,et al.  fMRI Data Visualization with BrainBlend and Blender , 2010, Neuroinformatics.

[45]  Bernd Hamann,et al.  Visualizing White Matter Fiber Tracts with Optimally Fitted Curved Dissection Surfaces , 2010, VCBM.

[46]  Alan C. Evans,et al.  Applications of random field theory to functional connectivity , 1998, Human brain mapping.

[47]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[48]  Douglas L. Rosene,et al.  The Geometric Structure of the Brain Fiber Pathways , 2012, Science.

[49]  Hans-Peter Seidel,et al.  Visualization with stylized line primitives , 2005, VIS 05. IEEE Visualization, 2005..

[50]  Alan Connelly,et al.  Track-weighted functional connectivity (TW-FC): A tool for characterizing the structural–functional connections in the brain , 2013, NeuroImage.

[51]  Lijun Zhang,et al.  Determining functional connectivity using fMRI data with diffusion-based anatomical weighting , 2009, NeuroImage.

[52]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[53]  Carl-Fredrik Westin,et al.  TWO-TENSOR FIBER TRACTOGRAPHY , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[54]  Darrel C. Ince,et al.  The case for open computer programs , 2012, Nature.

[55]  E. William Yund,et al.  Hemispherically-Unified Surface Maps of Human Cerebral Cortex: Reliability and Hemispheric Asymmetries , 2012, PloS one.

[56]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[57]  Alan C. Evans,et al.  Comparing functional connectivity via thresholding correlations and singular value decomposition , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[58]  A. Toga,et al.  Mapping Connectivity Damage in the Case of Phineas Gage , 2012, PloS one.

[59]  Tobias Isenberg,et al.  Depth-Dependent Halos: Illustrative Rendering of Dense Line Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[60]  David G. Norris,et al.  An Investigation of Functional and Anatomical Connectivity Using Magnetic Resonance Imaging , 2002, NeuroImage.

[61]  Christopher L. Asplund,et al.  The organization of the human cerebellum estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[62]  Vid Petrovic,et al.  Visualizing Whole-Brain DTI Tractography with GPU-based Tuboids and LoD Management , 2007, IEEE Transactions on Visualization and Computer Graphics.

[63]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[64]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[65]  Robert W. Cox,et al.  AFNI: What a long strange trip it's been , 2012, NeuroImage.

[66]  Christian G. Habeck,et al.  Intrinsic Functional-Connectivity Networks for Diagnosis: Just Beautiful Pictures? , 2011, Brain Connect..

[67]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[68]  David H. Laidlaw,et al.  Effects of illumination, texture, and motion on task performance in 3D tensor-field streamtube visualizations , 2012, 2012 IEEE Pacific Visualization Symposium.

[69]  Daniel A. Handwerker,et al.  Periodic changes in fMRI connectivity , 2012, NeuroImage.

[70]  Tobias Isenberg,et al.  Weighted graph comparison techniques for brain connectivity analysis , 2013, CHI.

[71]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[72]  Charl P. Botha,et al.  Visualization in Connectomics , 2012, Scientific Visualization.

[73]  Gerik Scheuermann,et al.  HOT-lines: tracking lines in higher order tensor fields , 2005, VIS 05. IEEE Visualization, 2005..

[74]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[75]  Jean-Philippe Thiran,et al.  The Connectome Viewer Toolkit: An Open Source Framework to Manage, Analyze, and Visualize Connectomes , 2011, Front. Neuroinform..

[76]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[78]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[79]  Donald E. Knuth,et al.  Literate Programming , 1984, Comput. J..

[80]  Vince D. Calhoun,et al.  On network derivation, classification, and visualization: a response to Habeck and Moeller. , 2011, Brain connectivity.

[81]  Tobias Isenberg,et al.  DTI in Context: Illustrating Brain Fiber Tracts In Situ , 2010, Comput. Graph. Forum.

[82]  David H. Laidlaw,et al.  Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[83]  Geoffrey J. M. Parker,et al.  Chapter 20 – Validation of Tractography , 2014 .

[84]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Waqas Majeed,et al.  Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans , 2011, NeuroImage.

[86]  Charl P. Botha,et al.  Visual Analysis of Integrated Resting State Functional Brain Connectivity and Anatomy , 2010, VCBM.

[87]  Jingyu Zhang,et al.  Human brain functional MRI and DTI visualization with virtual reality. , 2011, Quantitative imaging in medicine and surgery.

[88]  Hang Joon Jo,et al.  Trouble at Rest: How Correlation Patterns and Group Differences Become Distorted After Global Signal Regression , 2012, Brain Connect..

[89]  Jacob Jelsing,et al.  Validation of in vitro probabilistic tractography , 2007, NeuroImage.

[90]  Nico S. Gorbach,et al.  Fiber stippling: An illustrative rendering for probabilistic diffusion tractography , 2011, 2011 IEEE Symposium on Biological Data Visualization (BioVis)..

[91]  David H. Laidlaw,et al.  Exploring Brain Connectivity with Two-Dimensional Neural Maps , 2012, IEEE Transactions on Visualization and Computer Graphics.

[92]  Rudolph Pienaar,et al.  Real-time Volume Rendering and Tractography Visualization on the Web , 2012, J. WSCG.

[93]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[94]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[95]  Waqas Majeed,et al.  Spatiotemporal dynamics of low frequency fluctuations in BOLD fMRI of the rat , 2009, Journal of magnetic resonance imaging : JMRI.

[96]  David F. Tate,et al.  A Novel Interface for Interactive Exploration of DTI Fibers , 2009, IEEE Transactions on Visualization and Computer Graphics.

[97]  M. Carter Computer graphics: Principles and practice , 1997 .

[98]  Timothy O. Laumann,et al.  Informatics and Data Mining Tools and Strategies for the Human Connectome Project , 2011, Front. Neuroinform..

[99]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[100]  Christopher Nimsky,et al.  Hybrid Visualization for White Matter Tracts using Triangle Strips and Point Sprites , 2006, IEEE Transactions on Visualization and Computer Graphics.

[101]  Hans Hagen,et al.  Tractography in Context: Multimodal Visualization of Probabilistic Tractograms in Anatomical Context , 2012, VCBM.

[102]  Deena Skolnick Weisberg,et al.  The Seductive Allure of Neuroscience Explanations , 2008, Journal of Cognitive Neuroscience.

[103]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .

[104]  Anna Vilanova,et al.  Visualization of DTI fibers using hair-rendering techniques , 2006 .

[105]  Katrin Amunts,et al.  Visualization of Probabilistic Fiber Tracts in Virtual Reality , 2011, MMVR.

[106]  Alan Connelly,et al.  Track density imaging (TDI): Validation of super resolution property , 2011, NeuroImage.

[107]  Eswar Damaraju,et al.  Tracking whole-brain connectivity dynamics in the resting state. , 2014, Cerebral cortex.

[108]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[109]  D. Gounot,et al.  Functional integration in schizophrenia: too little or too much? Preliminary results on fMRI data , 2005, NeuroImage.

[110]  P. Ellen Grant,et al.  Neuroimaging in the browser using the X Toolkit , 2012 .

[111]  Thomas Schultz,et al.  A Maximum Enhancing Higher‐Order Tensor Glyph , 2010, Comput. Graph. Forum.

[112]  Jean-Francois Mangin,et al.  Tractography-Based Parcellation of the Cortex Using a Spatially-Informed Dimension Reduction of the Connectivity Matrix , 2009, MICCAI.

[113]  Bart M. ter Haar Romeny,et al.  Fused DTI/HARDI Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[114]  Guido Gerig,et al.  Patient-Tailored Connectomics Visualization for the Assessment of White Matter Atrophy in Traumatic Brain Injury , 2011, Front. Neur..

[115]  Bruce R. Rosen,et al.  Diffusion anisotropy and white matter tracts , 1996, NeuroImage.

[116]  Erik B. Erhardt,et al.  Data Visualization in the Neurosciences: Overcoming the Curse of Dimensionality , 2012, Neuron.

[117]  Gerik Scheuermann,et al.  LineAO - Improved Three-Dimensional Line Rendering , 2013, IEEE Trans. Vis. Comput. Graph..