Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice

[1]  K. Harris,et al.  Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated , 1999, Nature Neuroscience.

[2]  E. Shimizu,et al.  Genetic enhancement of learning and memory in mice , 1999, Nature.

[3]  R. Nicoll,et al.  Expression Mechanisms Underlying NMDA Receptor‐Dependent Long‐Term Potentiation , 1999, Annals of the New York Academy of Sciences.

[4]  H. Eichenbaum,et al.  The global record of memory in hippocampal neuronal activity , 1999, Nature.

[5]  J. Fiala,et al.  Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation , 1998, The Journal of comparative neurology.

[6]  N. Woolf A structural basis for memory storage in mammals , 1998, Progress in Neurobiology.

[7]  Charles F Stevens,et al.  Synaptic plasticity , 1998, Current Biology.

[8]  K M Harris,et al.  Stability in Synapse Number and Size at 2 Hr after Long-Term Potentiation in Hippocampal Area CA1 , 1998, The Journal of Neuroscience.

[9]  Eric R Kandel,et al.  Restricted and Regulated Overexpression Reveals Calcineurin as a Key Component in the Transition from Short-Term to Long-Term Memory , 1998, Cell.

[10]  J. Tsien Behavioral genetics: subregion- and cell type-restricted gene knockout in mouse brain. , 1998, Pathologie-biologie.

[11]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[12]  F. Gage,et al.  More hippocampal neurons in adult mice living in an enriched environment , 1997, Nature.

[13]  Alcino J. Silva,et al.  Spaced training induces normal long-term memory in CREB mutant mice , 1997, Current Biology.

[14]  S. Tonegawa,et al.  The Essential Role of Hippocampal CA1 NMDA Receptor–Dependent Synaptic Plasticity in Spatial Memory , 1996, Cell.

[15]  David J. Anderson,et al.  Subregion- and Cell Type–Restricted Gene Knockout in Mouse Brain , 1996, Cell.

[16]  K. I. Blum,et al.  Impaired Hippocampal Representation of Space in CA1-Specific NMDAR1 Knockout Mice , 1996, Cell.

[17]  A. Phillips,et al.  Ischemia-induced object-recognition deficits in rats are attenuated by hippocampal ablation before or soon after ischemia. , 1996, Behavioral neuroscience.

[18]  R. Nicoll,et al.  Contrasting properties of two forms of long-term potentiation in the hippocampus , 1995, Nature.

[19]  H Eichenbaum,et al.  Selective damage to the hippocampal region blocks long‐term retention of a natural and nonspatial stimulus‐stimulus association , 1995, Hippocampus.

[20]  P Andersen,et al.  An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Bear,et al.  Synaptic plasticity: LTP and LTD , 1994, Current Opinion in Neurobiology.

[22]  Susumu Tonegawa,et al.  Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice , 1994, Cell.

[23]  C. Shatz,et al.  Developmental mechanisms that generate precise patterns of neuronal connectivity , 1993, Cell.

[24]  E. Kandel,et al.  Structural changes accompanying memory storage. , 1993, Annual review of physiology.

[25]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[26]  Joseph E LeDoux,et al.  Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. , 1992, Behavioral neuroscience.

[27]  S. Nakanishi,et al.  Molecular cloning and characterization of the rat NMDA receptor , 1991, Nature.

[28]  E Gould,et al.  Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  M. Diamond,et al.  Enriching Heredity: The Impact of the Environment on the Anatomy of the Brain , 1988 .

[30]  Alan Peters,et al.  Further aspects of cortical function, including hippocampus , 1987 .

[31]  Didima M. G. de Groot,et al.  A critical evaluation of methods for estimating the numerical density of synapses , 1986, Journal of Neuroscience Methods.

[32]  L. Squire,et al.  Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  David A. Levitsky,et al.  Social transmission of food preferences in adult hooded rats (Rattus norvegicus) , 1984 .

[34]  Paul Leonard Gabbott,et al.  The ‘single’ section Golgi-impregnation procedure: methodological description , 1984, Journal of Neuroscience Methods.

[35]  D. C. Sterio The unbiased estimation of number and sizes of arbitrary particles using the disector , 1984, Journal of microscopy.

[36]  J. Dalrymple-Alford,et al.  Preoperative differential housing and dorsal hippocampal lesions in rats. , 1984, Behavioral neuroscience.

[37]  W. Greenough,et al.  Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats , 1978, Experimental Neurology.

[38]  H. Gundersen,et al.  Notes on the estimation of the numerical density of arbitrary profiles: the edge effect , 1977 .

[39]  M. Rosenzweig Environmental complexity, cerebral change, and behavior. , 1966, The American psychologist.

[40]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[41]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.