Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries

The cycling performance and SEI composition of Si nano-particle anodes in electrolytes containing 5–25 wt% fluoroethyelene carbonate (FEC) and 3–6 wt% vinylene carbonate (VC) has been investigated by a combination of by electrochemical cycling, electrochemical impedance spectroscopy, IR-ATR and XPS. The incorporation of FEC or VC changes the cycling performance, impedance, electrode morphology, and SEI structure of Si nano-particle electrodes. Cells cycled with standard carbonate electrolytes have poor capacity retention and the anode surface is primarily covered by lithium alkyl carbonates and lithium carbonate. The electrodes cycled in electrolyte containing 10–15 wt% FEC have the smallest impedance and best capacity retention. The reduction of electrolyte containing FEC forms a stable SEI consisting of poly(FEC), LiF, lithium carbonate and lithium alkyl carbonates. Reduction of electrolytes containing VC results in higher impedance and the generation of lithium carbonate, poly(VC) and traces of LiF, and lithium alkyl carbonates.

[1]  K. Edström,et al.  Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries : A Photoelectron Spectroscopy Study , 2013 .

[2]  Gregory A. Roberts,et al.  Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[3]  Mengyun Nie,et al.  ANODE SOLID ELECTROLYTE INTERPHASE (SEI) OF LITHIUM ION BATTERY CHARACTERIZED BY MICROSCOPY AND SPECTROSCOPY , 2013 .

[4]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[5]  N. Choi,et al.  Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte , 2007 .

[6]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[7]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[8]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[9]  Cao Cuong Nguyen,et al.  Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries , 2010 .

[10]  Fredrik J. Lindgren,et al.  Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy , 2012 .

[11]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[12]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[13]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[14]  Myung-Hyun Ryou,et al.  Mussel‐Inspired Adhesive Binders for High‐Performance Silicon Nanoparticle Anodes in Lithium‐Ion Batteries , 2013, Advanced materials.

[15]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[16]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[17]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[18]  Kenji Fukuda,et al.  Carbon-Coated Si as a Lithium-Ion Battery Anode Material , 2002 .

[19]  Jung-Ki Park,et al.  Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode , 2010 .

[20]  Kang Xu,et al.  Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries. , 2006, The journal of physical chemistry. B.

[21]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[22]  Li Liu,et al.  Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes , 2014 .

[23]  Adam Heller,et al.  High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. , 2012, Chemical communications.

[24]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[25]  Jing-ying Xie,et al.  Enhancing Electrochemical Performance of Silicon Film Anode by Vinylene Carbonate Electrolyte Additive , 2006 .

[26]  T. Brousse,et al.  Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .

[27]  V. Battaglia,et al.  Conductive Polymer and Silicon Composite Secondary Particles for a High Area-Loading Negative Electrode , 2013 .

[28]  J. Tarascon,et al.  Identification of Li Battery Electrolyte Degradation Products Through Direct Synthesis and Characterization of Alkyl Carbonate Salts , 2005 .

[29]  Mengyun Nie,et al.  Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy , 2013 .

[30]  M. Winter,et al.  Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate , 2013 .

[31]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[32]  J. Tarascon,et al.  Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study. , 2005, The journal of physical chemistry. B.

[33]  Cao Cuong Nguyen,et al.  Roles of Oxygen and Interfacial Stabilization in Enhancing the Cycling Ability of Silicon Oxide Anodes for Rechargeable Lithium Batteries , 2013 .

[34]  B. Lucht,et al.  Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes , 2012 .

[35]  Nam-Soon Choi,et al.  Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode , 2006 .

[36]  Shoji Yamaguchi,et al.  Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode , 2004 .

[37]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.