DLR HySU - A Benchmark Dataset for Spectral Unmixing

Spectral unmixing represents both an application per se and a pre-processing step for several applications involving data acquired by imaging spectrometers. However, there is still a lack of publicly available reference data sets suitable for the validation and comparison of different spectral unmixing methods. In this paper we introduce the DLR HyperSpectral Unmixing (DLR HySU) benchmark dataset, acquired over German Aerospace Center (DLR) premises in Oberpfaffenhofen. The dataset includes airborne hyperspectral and RGB imagery of targets of different materials and sizes, complemented by simultaneous ground-based reflectance measurements. The DLR HySU benchmark allows a separate assessment of all spectral unmixing main steps: dimensionality estimation, endmember extraction (with and without pure pixe assumption), and abundance estimation. Results obtained with traditional algorithms for each of these steps are reported. To the best of our knowledge, this is the first time that real imaging spectrometer data with accurately measured targets are made available for hyperspectral unmixing experiments. The DLR HySU benchmark dataset is openly available online and the community is welcome to use it for spectral unmixing and other applications.

[1]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[2]  José M. Bioucas-Dias,et al.  A variable splitting augmented Lagrangian approach to linear spectral unmixing , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[3]  Chein-I Chang,et al.  Detection of spectral signatures in multispectral MR images for classification , 2003, IEEE Transactions on Medical Imaging.

[4]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Daniel Schläpfer,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 1: Parametric orthorectification , 2002 .

[6]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[7]  Chein-I Chang,et al.  A Review of Virtual Dimensionality for Hyperspectral Imagery , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[8]  Andreas Baumgartner,et al.  Transformation of point spread functions on an individual pixel scale. , 2020, Optics express.

[9]  Addisson Salazar,et al.  Estimation of the Number of Endmembers in Hyperspectral Images Using Agglomerative Clustering , 2020, Remote. Sens..

[10]  Tanish Zaveri,et al.  Hyperspectral Endmember Extraction Algorithm Using Convex Geometry and K-Means , 2020 .

[11]  Ricardo Augusto Borsoi,et al.  Low-Rank Tensor Modeling for Hyperspectral Unmixing Accounting for Spectral Variability , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Feiyun Zhu,et al.  Hyperspectral Unmixing: Ground Truth Labeling, Datasets, Benchmark Performances and Survey , 2017, 1708.05125.

[13]  Rudolf Richter,et al.  Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS) , 2019, Sensors.

[14]  Naoto Yokoya,et al.  Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art , 2017, IEEE Geoscience and Remote Sensing Magazine.

[15]  Rupert Müller,et al.  Shadow Detection and Restoration for Hyperspectral Images Based on Nonlinear Spectral Unmixing , 2020, Remote. Sens..

[16]  R. Müller,et al.  IMPROVING HYSPEX SENSOR CO-REGISTRATION ACCURACY USING BRISK AND SENSOR-MODEL BASED RANSAC , 2014 .

[17]  Antonio J. Plaza,et al.  Region-Based Spatial Preprocessing for Endmember Extraction and Spectral Unmixing , 2011, IEEE Geoscience and Remote Sensing Letters.

[18]  P. Reinartz,et al.  A program for direct georeferencing of airborne and spaceborne line scanner images , 2002 .

[19]  R. Richter,et al.  Correction of satellite imagery over mountainous terrain. , 1998, Applied optics.

[20]  Peter Reinartz,et al.  Noise Reduction in Hyperspectral Images Through Spectral Unmixing , 2014, IEEE Geoscience and Remote Sensing Letters.

[21]  Jean-Yves Tourneret,et al.  Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery , 2012, IEEE Transactions on Image Processing.

[22]  First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2009, Grenoble, France, August 26-28, 2009 , 2009, WHISPERS.

[23]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[24]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[25]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[26]  Chein-I Chang,et al.  Automatic spectral target recognition in hyperspectral imagery , 2003 .

[27]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[28]  Antonio J. Plaza,et al.  Sparse Unmixing of Hyperspectral Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[29]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[30]  J. Boardman,et al.  Geometric mixture analysis of imaging spectrometry data , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[31]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[32]  Chein-I Chang,et al.  Comparative Study and Analysis Among ATGP, VCA, and SGA for Finding Endmembers in Hyperspectral Imagery , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[33]  Jocelyn Chanussot,et al.  Hyperspectral Local Intrinsic Dimensionality , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[34]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[35]  Mark Berman,et al.  An Investigation Into the Impact of Band Error Variance Estimation on Intrinsic Dimension Estimation in Hyperspectral Images , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[36]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Mathias Schneider,et al.  The Fully Automatic Optical Processing System CATENA at DLR , 2013 .

[38]  Antonio J. Plaza,et al.  On Endmember Identification in Hyperspectral Images Without Pure Pixels: A Comparison of Algorithms , 2011, Journal of Mathematical Imaging and Vision.

[39]  Claas Köhler,et al.  Airborne Imaging Spectrometer HySpex , 2016 .

[40]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[42]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[43]  Paul D. Gader,et al.  A Review of Nonlinear Hyperspectral Unmixing Methods , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[44]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[45]  Brenda J Butka Imaging , 2003, JAMA.