Fragmentation Method Combined with Quantum Monte Carlo Calculations(Atomic and molecular physics)

The total energy of a small polypeptide system is calculated by combining the quantum Monte Carlo (QMC) and fragment molecular orbital (FMO) methods. Electronic correlation is taken into account us...

[1]  D. Truhlar,et al.  Quantum mechanical methods for enzyme kinetics. , 2003, Annual review of physical chemistry.

[2]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[3]  Kazuo Kitaura,et al.  CHAPTER 1 – Theoretical development of the fragment molecular orbital (FMO) method , 2006 .

[4]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[5]  J E Inglesfield,et al.  A method of embedding , 1981 .

[6]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[7]  Yuji Mochizuki,et al.  Large scale MP2 calculations with fragment molecular orbital scheme , 2004 .

[8]  Chris-Kriton Skylaris,et al.  Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.

[9]  Kaori Fukuzawa,et al.  Developments and applications of ABINIT-MP software based on the fragment molecular orbital method , 2006 .

[10]  R J Needs,et al.  Scheme for adding electron-nucleus cusps to Gaussian orbitals. , 2005, The Journal of chemical physics.

[11]  Masami Uebayasi,et al.  Pair interaction molecular orbital method: an approximate computational method for molecular interactions , 1999 .

[12]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[13]  Umpei Nagashima,et al.  A parallelized integral-direct second-order Møller–Plesset perturbation theory method with a fragment molecular orbital scheme , 2004 .

[14]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[15]  J. Grossman,et al.  Linear-scaling quantum Monte Carlo calculations. , 2001, Physical review letters.

[16]  Martin,et al.  Unconstrained minimization approach for electronic computations that scales linearly with system size. , 1993, Physical review. B, Condensed matter.

[17]  J. Nørskov,et al.  Effective-medium theory of chemical binding: Application to chemisorption , 1980 .

[18]  Stefano Baroni,et al.  Reptation Quantum Monte Carlo: A Method for Unbiased Ground-State Averages and Imaginary-Time Correlations , 1999 .

[19]  R. Needs,et al.  Jastrow correlation factor for atoms, molecules, and solids , 2004, 0801.0378.

[20]  R. J. Needs,et al.  Variance-minimization scheme for optimizing Jastrow factors , 2005 .