Parallel Finite Volume Method Simulation of Three-Dimensional Fluid Flow and Convective Heat Transfer for Viscoplastic Non-Newtonian Fluids

Three-dimensional fluid mechanics and heat transfer for viscoplastic flows are described by finite volume method, FVM. The open multi-processing approach has been implemented to parallelize the numerical code. Results for the elapsed times, speed-ups and efficiencies are presented. The code was used to describe the natural convection (Ra = 104; 106) and the lid-driven cavity (Re = 100; 1000) processes with Bingham, Casson and Herschel–Bulkley fluids (Bn = 0.01; 1.0). Results describing isotherms, velocity distributions and streamtraces, as a function of Ra, Re, Pr and Bn numbers are shown. The grid size analysis shows that different sizes are required to obtain precise results for Nusselt number and friction factor.

[1]  Fabio Yamashita,et al.  Friction factors and rheological properties of orange juice , 1999 .

[2]  T. Taylor,et al.  A Pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations , 1987 .

[3]  R. Lemus-Mondaca,et al.  Unsteady 2D conjugate natural non-Newtonian convection with non-Newtonian liquid sterilization in square cavity , 2013 .

[4]  Jason M. Reese,et al.  A parallel compact-TVD method for compressible fluid dynamics employing shared and distributed-memory paradigms , 2011 .

[5]  M. Mamou,et al.  Natural Convection in a Vertical Rectangular Cavity Filled with a Non-Newtonian Power Law Fluid and Subjected to a Horizontal Temperature Gradient , 2006 .

[6]  Vivek Sarin,et al.  Parallelization of a Simple-Based Algorithm to Simulate Mixed Convective Flow Over a Backward-Facing Step , 2009 .

[7]  Sverker Holmgren,et al.  OpenMP versus MPI for PDE Solvers Based on Regular Sparse Numerical Operators , 2002, International Conference on Computational Science.

[8]  Chang Sung Kim,et al.  Computational Challenges of Viscous Incompressible Flows , 2005 .

[9]  R. Lemus-Mondaca,et al.  Numerical conjugate air mixed convection/non-Newtonian liquid solidification for various cavity configurations and rheological models , 2011 .

[10]  M. Sahin,et al.  A novel fully implicit finite volume method applied to the lid‐driven cavity problem—Part I: High Reynolds number flow calculations , 2003 .

[11]  Javier Telis-Romero,et al.  Laminar flow of soursop juice through concentric annuli: Friction factors and rheology , 2007 .

[12]  Cha’o-Kuang Chen,et al.  FINITE ELEMENT SOLUTIONS OF LAMINAR AND TURBULENT MIXED CONVECTION IN A DRIVEN CAVITY , 1996 .

[13]  Howard A. Barnes,et al.  The yield stress—a review or ‘παντα ρει’—everything flows? , 1999 .

[14]  F. Durst,et al.  Lid-driven cavity with heat and mass transport , 1999 .

[15]  N. Moraga,et al.  Two‐dimensional non‐Newtonian injection molding with a new control volume FEM/volume of fluid method , 2013 .

[16]  Gundolf Haase,et al.  Solving the ghost-gluon system of Yang-Mills theory on GPUs , 2012, Comput. Phys. Commun..

[17]  Manfred Liebmann,et al.  Examining the analytic structure of Green's functions: Massive parallel complex integration using GPUs , 2013, Comput. Phys. Commun..

[18]  D. Hotza,et al.  Temperature effect on the rheological behavior of carrot juices , 2009 .

[19]  R. Hwang,et al.  Effect of Reynolds number on the eddy structure in a lid-driven cavity , 1998 .

[20]  Dennis A. Siginer,et al.  On the laminar free convection and instability of grade fluids in enclosures , 2000 .

[21]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[22]  R. Gorla,et al.  Natural convection flow of non‐Newtonian power‐law fluid from a slotted vertical isothermal surface , 2009 .

[23]  P. Das,et al.  Flow of power-law fluids in a cavity driven by the motion of two facing lids – A simulation by lattice Boltzmann method , 2012 .

[24]  Bengt Sundén,et al.  Parallelization of a multi-blocked CFD code via three strategies for fluid flow and heat transfer analysis , 2004 .

[25]  Roland Glowinski,et al.  On the numerical simulation of Bingham visco-plastic flow: Old and new results , 2007 .

[26]  N. Moraga,et al.  Non Newtonian annular alloy solidification in mould , 2012 .

[27]  Roger I. Tanner,et al.  Numerical analysis of three-dimensional Bingham plastic flow , 1992 .

[28]  Evan Mitsoulis,et al.  Entry and exit flows of Bingham fluids , 1992 .

[29]  A. Gelfgat Stability of convective flows in cavities: solution of benchmark problems by a low‐order finite volume method , 2007 .

[30]  Javier Jiménez,et al.  A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers , 2013 .

[31]  Jay Hoeflinger,et al.  Producing scalable performance with OpenMP: Experiments with two CFD applications , 2001, Parallel Comput..

[32]  A. Gelfgat Three‐dimensional instability of axisymmetric flows: solution of benchmark problems by a low‐order finite volume method , 2007 .

[33]  G. Carey,et al.  On a Natural-Convection Benchmark Problem in Non-Newtonian Fluids , 2006 .

[34]  Ihsan Dagtekin,et al.  Mixed convection in two-sided lid-driven differentially heated square cavity , 2004 .

[35]  Evan Mitsoulis,et al.  Flow of Bingham plastics in a lid-driven square cavity , 2001 .

[36]  W. H. Leong,et al.  On a physically-realizable benchmark problem in internal natural convection , 1998 .

[37]  Dochan Kwak,et al.  Aspects of unsteady incompressible flow simulations , 2002 .

[38]  B. Klein,et al.  Influence of rheology on the performance of horizontal stirred mills , 2004 .

[39]  W. H. Leong,et al.  Experimental Nusselt numbers for a cubical-cavity benchmark problem in natural convection , 1999 .

[40]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[41]  Yih-Ferng Peng,et al.  Transition in a 2-D lid-driven cavity flow , 2003 .

[42]  H. Kuhlmann,et al.  Accurate three-dimensional lid-driven cavity flow , 2005 .

[43]  T. Sheu,et al.  Three-dimensional bifurcations in a cubic cavity due to buoyancy-driven natural convection , 2011 .

[44]  Juan A Sepulveda,et al.  A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers , 2013 .

[45]  Roger I. Tanner,et al.  Numerical study of the Bingham squeeze film problem , 1984 .

[46]  D. Vola,et al.  Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results , 2003 .

[47]  Robert J. Poole,et al.  Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls , 2010 .

[48]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[49]  S. Frey,et al.  Numerical approximations for flow of viscoplastic fluids in a lid-driven cavity , 2011 .

[50]  J. Laskowski,et al.  Effect of pulp rheology on flotation of nickel sulphide ore with fibrous gangue particles , 2012 .

[51]  M. J. Galotto,et al.  NON‐NEWTONIAN CANNED LIQUID FOOD, UNSTEADY FLUID MECHANICS AND HEAT TRANSFER PREDICTION FOR PASTEURIZATION AND STERILIZATION , 2011 .

[52]  N. Moraga,et al.  Unsteady conjugate mixed convection phase change of a power law non-Newtonian fluid in a square cavity , 2010 .

[53]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[54]  Xing Cai,et al.  An OpenMP-enabled parallel simulator for particle transport in fluid flows , 2011, ICCS.

[55]  Jean-Robert Clermont,et al.  Numerical simulations of non-isothermal three-dimensional flows in an extruder by a finite-volume method , 2005 .

[56]  J. Derby,et al.  Parallel finite element calculation of flow in a three-dimensional lid-driven cavity using the CM-5 and T3D , 1997 .

[57]  Study of Convective Non-Newtonian Alloy Solidification in Molds by the PSIMPLER/Finite-Volume Method , 2010 .

[58]  Daniel De Kee,et al.  Non-Newtonian fluids with a yield stress , 2005 .

[59]  Georgios C. Georgiou,et al.  Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method , 2013, ArXiv.

[60]  Bakhtier Farouk,et al.  A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure , 1991 .

[61]  Olivier Pantalé,et al.  Parallelization of an object-oriented FEM dynamics code: influence of the strategies on the Speedup , 2005, Adv. Eng. Softw..