A parallel aerostructural optimization framework for aircraft design studies

Preliminary aircraft design studies use structural weight models that are calibrated with data from existing aircraft. Computing weights with these models is a fast procedure that provides reliable weight estimates when the candidate designs lie within the domain of the data used for calibration. However, this limitation is too restrictive when we wish to assess the relative benefits of new structural technologies and new aircraft configurations early in the design process. To address this limitation, we present a computationally efficient aerostructural design framework for initial aircraft design studies that uses a full finite-element model of key structural components to better assess the potential benefits of new technologies. We use a three-dimensional panel method to predict the aerodynamic forces and couple the lifting surface deflections to compute the deformed aerodynamic flying shape. To be used early in the design cycle, the aerostructural computations must be fast, robust, and allow for significant design flexibility. To address these requirements, we develop a geometry parametrization technique that enables large geometric modifications, we implement a parallel Newton–Krylov approach that is robust and computationally efficient to solve the aeroelastic system, and we develop an adjoint-based derivative evaluation method to compute the derivatives of functions of interest for design optimization. To demonstrate the capabilities of the framework, we present a design optimization of a large transport aircraft wing that includes a detailed structural design parametrization. The results demonstrate that the proposed framework can be used to make detailed structural design decisions to meet overall aircraft mission requirements.

[1]  John C. Vassberg,et al.  A Unified Baseline Grid about the Common Research Model Wing-Body for the Fifth AIAA CFD Drag Prediction Workshop , 2011 .

[2]  Stephen C. Smith A Computational and Experimental Study of Nonlinear Aspects of Induced Drag , 1996 .

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  Joaquim R. R. A. Martins,et al.  pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization , 2011, Structural and Multidisciplinary Optimization.

[5]  S. Brown,et al.  Displacement extrapolations for CFD+CSM aeroelastic analysis , 1997 .

[6]  Joaquim R. R. A. Martins,et al.  Multi-point, multi-mission, high-fidelity aerostructural optimization of a long-range aircraft configuration , 2012 .

[7]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[8]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[9]  Joaquim R. R. A. Martins,et al.  Aerostructural Optimization of Nonplanar Lifting Surfaces , 2010 .

[10]  J. Alonso,et al.  Aero-Structural Wing Design Optimization Using High-Fidelity Sensitivity Analysis , 2001 .

[11]  Graeme J. Kennedy,et al.  High aspect ratiowing design: Optimal aerostructural tradeoffs for the next generation of materials , 2014 .

[12]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[13]  Joaquim R. R. A. Martins,et al.  Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration , 2014 .

[14]  Joaquim R. R. A. Martins,et al.  An adaptive approach to constraint aggregation using adjoint sensitivity analysis , 2007 .

[15]  J. Hess,et al.  Calculation of potential flow about arbitrary bodies , 1967 .

[16]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[17]  Joaquim R. R. A. Martins,et al.  Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization , 2015 .

[18]  W. J. Stroud,et al.  Minimum-Mass Design of Filamentary Composite Panels under Combined Loads: Design Procedure Based on Simplified Buckling Equations. , 1976 .

[19]  Prabhat Hajela,et al.  Preliminary weight estimation of conventional and joined wings usingequivalent beam models , 1988 .

[20]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[21]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[22]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[23]  Georgi Kalitzin,et al.  Unsteady turbomachinery computations using massively parallel platforms , 2006 .

[24]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[25]  P. Hughes Spacecraft Attitude Dynamics , 1986 .

[26]  Raphael T. Haftka,et al.  Optimization of Flexible Wing Structures Subject to Strength and Induced Drag Constraints , 1977 .

[27]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[28]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[29]  Masoud Rais-Rohani,et al.  Integrated aerodynamic-structural design of a transport wing , 1989 .

[30]  Ilan Kroo,et al.  Aircraft Design: Synthesis and Analysis , 1999 .

[31]  Raphael T. Haftka,et al.  Integrated aerodynamic/structural design of a sailplane wing , 1986 .

[32]  K. Maute,et al.  A Schur–Newton–Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis , 2006 .

[33]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[34]  Kurt Maute,et al.  Aeroelastic design optimization for laminar and turbulent flows , 2008 .

[35]  Charbel Farhat,et al.  Matching fluid and structure meshes for aeroelastic computations : a parallel approach , 1995 .

[36]  L. Erickson Panel methods: An introduction , 1990 .

[37]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[38]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[39]  J. Alonso,et al.  ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .

[40]  Joaquim R. R. A. Martins,et al.  A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures , 2014 .

[41]  Ilan Kroo,et al.  Subsonic wing planform design using multidisciplinary optimization , 1995 .

[42]  Joaquim R. R. A. Martins,et al.  A Comparison of Metallic and Composite Aircraft Wings Using Aerostructural Design Optimization , 2012 .

[43]  Richard Shepherd Shevell,et al.  Fundamentals of Flight , 1983 .

[44]  M. L. Bucalém,et al.  Higher‐order MITC general shell elements , 1993 .

[45]  C. Farhat,et al.  Coupled Analytical Sensitivity Analysis and Optimization of Three-Dimensional Nonlinear Aeroelastic Systems , 2001 .

[46]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[47]  J. L. Walsh,et al.  Efficient structural optimization for multiple load cases using adjoint sensitivities , 2001 .

[48]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[49]  John C. Vassberg,et al.  Development of a Common Research Model for Applied CFD Validation Studies , 2008 .

[50]  C. Kelley,et al.  Convergence Analysis of Pseudo-Transient Continuation , 1998 .

[51]  Charbel Farhat,et al.  Sensitivity analysis and design optimization of three‐dimensional non‐linear aeroelastic systems by the adjoint method , 2003 .

[52]  Ilan Kroo,et al.  Multidisciplinary Considerations in the Design of Wings and Wing Tip Devices , 2010 .

[53]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[54]  Ruben E. Perez,et al.  Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach , 2011 .

[55]  Carlos E. S. Cesnik,et al.  Evaluation of computational algorithms suitable for fluid-structure interactions , 2000 .