Families of Surface Gap Solitons and Their Stability via the Numerical Evans Function Method

The nonlinear Schr\"{o}dinger equation with a linear periodic potential and a nonlinearity coefficient $\Gamma$ with a discontinuity supports stationary localized solitary waves with frequencies inside spectral gaps, so called surface gap solitons (SGSs). We compute families of 1D SGSs using the arclength continuation method for a range of values of the jump in $\Gamma$. Using asymptotics, we show that when the frequency parameter converges to the bifurcation gap edge, the size of the allowed jump in $\Gamma$ converges to 0 for SGSs centered at any $x_c\in \R$. Linear stability of SGSs is next determined via the numerical Evans function method, in which the stable and unstable manifolds corresponding to the 0 solution of the linearized spectral ODE problem need to be evolved. Zeros of the Evans function coincide with eigenvalues of the linearized operator. Far from the SGS center the manifolds are spanned by exponentially decaying/increasing Bloch functions. Evolution of the manifolds suffers from stiffness but a numerically stable formulation is possible in the exterior algebra formulation and with the use of Grassmanian preserving ODE integrators. Eigenvalues with positive real part above a small constant are then detected using the complex argument principle and a contour parallel to the imaginary axis. The location of real eigenvalues is found via a straightforward evaluation of the Evans function along the real axis and several complex eigenvalues are located using M\"{u}ller's method. The numerical Evans function method is described in detail. Our results show the existence of both unstable and stable SGSs (possibly with a weak instability), where stability is obtained even for some SGSs centered in the domain half with the less focusing nonlinearity. Direct simulations of the PDE for selected SGS examples confirm the results of Evans function computations.

[1]  Charles Alexander Stuart,et al.  Bifurcation into spectral gaps , 1995 .

[2]  G Fibich,et al.  Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  S. Chern,et al.  Lectures on Differential Geometry , 2024, Graduate Studies in Mathematics.

[4]  Fatkhulla Kh. Abdullaev,et al.  Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices , 2005 .

[5]  H. B. Keller,et al.  Constructive methods for bifurcation and nonlinear eigenvalue problems , 1979 .

[6]  W. H. Reid,et al.  An initial value method for eigenvalue problems using compound matrices , 1979 .

[7]  Marco Marletta,et al.  Neumann–Dirichlet maps and analysis of spectral pollution for non-self-adjoint elliptic PDEs with real essential spectrum , 2010 .

[8]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[9]  Kurt Busch,et al.  Justification of the nonlinear Schrödinger equation in spatially periodic media , 2006 .

[10]  F. Dreisow,et al.  Observation of two-dimensional lattice interface solitons , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[11]  B. Palka An Introduction to Complex Function Theory , 1995 .

[12]  E B Davies,et al.  Spectral Pollution , 2002 .

[13]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[14]  J. Alexander,et al.  A topological invariant arising in the stability analysis of travelling waves. , 1990 .

[15]  D. E. Muller A method for solving algebraic equations using an automatic computer , 1956 .

[16]  Georg A. Gottwald,et al.  A Robust Numerical Method to Study Oscillatory Instability of Gap Solitary Waves , 2004, SIAM J. Appl. Dyn. Syst..

[17]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[18]  Todd Kapitula,et al.  Stability of bright solitary-wave solutions to perturbed nonlinear Schro , 1998 .

[19]  Michael I. Weinstein,et al.  Stability and instability of nonlinear defect states in the coupled mode equations—Analytical and numerical study , 2007, 0708.1157.

[20]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[21]  Todd Kapitula,et al.  Eigenvalues and resonances using the Evans function , 2004 .

[22]  A. Pankov Periodic Nonlinear Schrödinger Equation with Application to Photonic Crystals , 2004 .

[23]  Yuri S. Kivshar,et al.  Bose-Einstein condensates in optical lattices: Band-gap structure and solitons , 2003 .

[24]  Arnan Mitchell,et al.  Observation of surface gap solitons in semi-infinite waveguide arrays. , 2006, Physical Review Letters.

[25]  T. Yokonuma Tensor Spaces and Exterior Algebra , 1992 .

[26]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[27]  Demetrios N. Christodoulides,et al.  Lattice solitons in Bose-Einstein condensates , 2003 .

[28]  Dmitry E Pelinovsky,et al.  Bifurcations and stability of gap solitons in periodic potentials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[30]  Dmitry Pelinovsky,et al.  Surface Gap Solitons at a Nonlinearity Interface , 2007, SIAM J. Appl. Dyn. Syst..

[31]  Demetrios N. Christodoulides,et al.  Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices , 2003, Nature.

[32]  Michael I. Weinstein,et al.  Eigenvalues, and instabilities of solitary waves , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[33]  Lluis Torner,et al.  Multipole-mode surface solitons. , 2006, Optics letters.

[34]  Lluis Torner,et al.  Surface gap solitons. , 2006, Physical review letters.

[35]  Leon Q. Brin,et al.  Numerical testing of the stability of viscous shock waves , 2001, Math. Comput..

[36]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[37]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[38]  S. Sternberg Lectures on Differential Geometry , 1964 .

[39]  B Eiermann,et al.  Bright Bose-Einstein gap solitons of atoms with repulsive interaction. , 2004, Physical review letters.

[40]  Q. E. Hoq,et al.  Statics and dynamics of an inhomogeneously nonlinear lattice. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[42]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[43]  Mordechai Segev,et al.  Surface lattice solitons. , 2006, Optics letters.

[44]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[45]  Bernard Deconinck,et al.  Computing spectra of linear operators using the Floquet-Fourier-Hill method , 2006, J. Comput. Phys..

[46]  W. Magnus,et al.  Hill's equation , 1966 .

[47]  Thomas J. Bridges,et al.  Numerical exterior algebra and the compound matrix method , 2002, Numerische Mathematik.

[48]  Todd Kapitula,et al.  Edge Bifurcations for Near Integrable Systems via Evans Function Techniques , 2002, SIAM J. Math. Anal..

[49]  Y. Kivshar,et al.  Nonlinear guided waves and spatial solitons in a periodic layered medium , 2001, nlin/0105073.

[50]  Kevin Zumbrun,et al.  The gap lemma and geometric criteria for instability of viscous shock profiles , 1998 .

[51]  Lluis Torner,et al.  Surface vortex solitons. , 2006, Optics express.