Manipulating Natural Product Biosynthetic Pathways via DNA Assembler

DNA assembler is an efficient synthetic biology method for constructing and manipulating biochemical pathways. The rapidly increasing number of sequenced genomes provides a rich source for discovery of gene clusters involved in synthesizing new natural products. However, both discovery and economical production are hampered by our limited knowledge in manipulating most organisms and the corresponding pathways. By taking advantage of yeast in vivo homologous recombination, DNA assembler synthesizes an entire expression vector containing the target biosynthetic pathway and the genetic elements needed for DNA maintenance and replication. Here we use the spectinabilin clusters originated from two hosts as examples to illustrate the guidelines of using DNA assembler for cluster characterization and silent cluster activation. Such strategies offer unprecedented versatility in cluster manipulation, bypass the traditional laborious strategies to elicit pathway expression, and provide a new platform for de novo cluster assembly and genome mining for discovering new natural products. Curr. Protoc. Chem. Biol. 6:65‐100 © 2014 by John Wiley & Sons, Inc.

[1]  Corinna Lange,et al.  Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. , 2007, Nature chemical biology.

[2]  Won-Kyung Hong,et al.  Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis , 2010, Biotechnology Letters.

[3]  J. Vederas,et al.  [Drug discovery and natural products: end of era or an endless frontier?]. , 2011, Biomeditsinskaia khimiia.

[4]  A. Pineda-Lucena,et al.  Amino Acid Precursor Supply in the Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin by Streptomyces lydicus , 2011, Journal of bacteriology.

[5]  Richard H. Baltz,et al.  Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters , 2010, Journal of Industrial Microbiology & Biotechnology.

[6]  Eung-Soo Kim,et al.  Transcriptome Analysis of an Antibiotic Downregulator Mutant and Synergistic Actinorhodin Stimulation via Disruption of a Precursor Flux Regulator in Streptomyces coelicolor , 2011, Applied and Environmental Microbiology.

[7]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[8]  U C Banerjee,et al.  Bioactive Compounds from Cyanobacteria and Microalgae: An Overview , 2005, Critical reviews in biotechnology.

[9]  Jared R Leadbetter,et al.  Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. , 2003, Current opinion in microbiology.

[10]  M. Rondon,et al.  Identification of the Biosynthetic Gene Cluster and an Additional Gene for Resistance to the Antituberculosis Drug Capreomycin , 2007, Applied and Environmental Microbiology.

[11]  C. Schmidt-Dannert,et al.  Discovery and characterization of terpenoid biosynthetic pathways of fungi. , 2012, Methods in enzymology.

[12]  Timothy B. Stockwell,et al.  Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome , 2008, Science.

[13]  J. Jonák,et al.  Cloning and Characterization of the strOperon and Elongation Factor Tu Expression in Bacillus stearothermophilus , 2000, Journal of bacteriology.

[14]  Huimin Zhao,et al.  Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. , 2013, ACS synthetic biology.

[15]  J. Pernodet,et al.  Regulation of the Biosynthesis of the Macrolide Antibiotic Spiramycin in Streptomyces ambofaciens , 2010, Journal of bacteriology.

[16]  Leah Blau Medicinal Natural Products A Biosynthetic Approach , 2016 .

[17]  Gregory L Challis,et al.  Mining microbial genomes for new natural products and biosynthetic pathways. , 2008, Microbiology.

[18]  B. Shen,et al.  Engineered production of iso-migrastatin in heterologous Streptomyces hosts. , 2009, Bioorganic & medicinal chemistry.

[19]  Rolf Müller,et al.  Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting , 2012, Nature Biotechnology.

[20]  I. Ahmad,et al.  Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway , 2011, Bioprocess and Biosystems Engineering.

[21]  H. Moriya,et al.  Establishing a New Methodology for Genome Mining and Biosynthesis of Polyketides and Peptides through Yeast Molecular Genetics , 2012, Chembiochem : a European journal of chemical biology.

[22]  David J Newman,et al.  Natural products as sources of new drugs over the 30 years from 1981 to 2010. , 2012, Journal of natural products.

[23]  A. Brakhage,et al.  Activation of fungal silent gene clusters: a new avenue to drug discovery. , 2008, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[24]  Arnold L. Demain,et al.  From natural products discovery to commercialization: a success story , 2006, Journal of Industrial Microbiology and Biotechnology.

[25]  Yong Huang,et al.  Cloning, sequencing, analysis, and heterologous expression of the fredericamycin biosynthetic gene cluster from Streptomyces griseus. , 2005, Journal of the American Chemical Society.

[26]  B G Johansson,et al.  Agarose gel electrophoresis. , 1972, Scandinavian journal of clinical and laboratory investigation. Supplementum.

[27]  M. Tanticharoen,et al.  Potent In Vitro Antimalarial Activity of Metacycloprodigiosin Isolated from Streptomycesspectabilis BCC 4785 , 2002, Antimicrobial Agents and Chemotherapy.

[28]  Kay Nieselt,et al.  The dynamic architecture of the metabolic switch in Streptomyces coelicolor , 2010, BMC Genomics.

[29]  J. Engels,et al.  Promoter constructions for efficient secretion expression in Streptomyces lividans , 2004, Applied Microbiology and Biotechnology.

[30]  R. Müller,et al.  Analysis of myxobacterial secondary metabolism goes molecular , 2006, Journal of Industrial Microbiology and Biotechnology.

[31]  Huimin Zhao,et al.  Direct cloning of large genomic sequences , 2012, Nature Biotechnology.

[32]  G. V. van Wezel,et al.  Chapter 5. Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. , 2009, Methods in enzymology.

[33]  Axel A Brakhage,et al.  Fungal secondary metabolites - strategies to activate silent gene clusters. , 2011, Fungal genetics and biology : FG & B.

[34]  G. Challis,et al.  Strategies for the Discovery of New Natural Products by Genome Mining , 2009, Chembiochem : a European journal of chemical biology.

[35]  Jun Ishikawa,et al.  Genome Sequence of the Streptomycin-Producing Microorganism Streptomyces griseus IFO 13350 , 2008, Journal of bacteriology.

[36]  H. Pennington,et al.  Millennium bugs , 2000, Nature.

[37]  H. Lee,et al.  Translation elongation factor 1-α gene from Pichia pastoris: molecular cloning, sequence, and use of its promoter , 2007, Applied Microbiology and Biotechnology.

[38]  J. Norimine,et al.  Characterization and gene expression of Babesia bovis elongation factor-1alpha. , 2006, International journal for parasitology.

[39]  N. Kelleher,et al.  Cloning, expression, and biochemical characterization of Streptomyces rubellomurinus genes required for biosynthesis of antimalarial compound FR900098. , 2008, Chemistry & biology.

[40]  M. Bibb,et al.  Chapter 4. Analyzing the regulation of antibiotic production in streptomycetes. , 2009, Methods in enzymology.

[41]  Yoshiyuki Sakaki,et al.  Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  N. Kelleher,et al.  Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. , 2006, Chemistry & biology.

[43]  K. Rinehart,et al.  Spectinabilin, a new nitro-containing metabolite isolated from streptomyces spectabilis , 1976 .

[44]  G. Lancini,et al.  Biosynthesis of Secondary Metabolites , 1993 .

[45]  N. Kelleher,et al.  Unusual transformations in the biosynthesis of the antibiotic phosphinothricin tripeptide. , 2007, Nature chemical biology.

[46]  H. Ikeda,et al.  Hyper-inducible expression system for streptomycetes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  T. Kieser Practical streptomyces genetics , 2000 .

[48]  Satoshi Omura,et al.  Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism , 2010, Proceedings of the National Academy of Sciences.

[49]  R. Abed,et al.  Applications of cyanobacteria in biotechnology , 2009, Journal of applied microbiology.

[50]  H. Gross Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects , 2007, Applied Microbiology and Biotechnology.

[51]  Virginia W Cornish,et al.  Reiterative Recombination for the in vivo assembly of libraries of multigene pathways , 2011, Proceedings of the National Academy of Sciences.

[52]  R. Biener,et al.  Comparative analysis of transcriptional activities of heterologous promoters in the rare actinomycete Actinoplanes friuliensis. , 2009, Journal of biotechnology.

[53]  Huimin Zhao,et al.  Cloning and heterologous expression of the spectinabilin biosynthetic gene cluster from Streptomyces spectabilis. , 2010, Molecular bioSystems.

[54]  C. Miranda,et al.  Deciphering Pactamycin Biosynthesis and Engineered Production of New Pactamycin Analogues , 2009, Chembiochem : a European journal of chemical biology.

[55]  A. Bull,et al.  Biodiversity as a source of innovation in biotechnology. , 1992, Annual review of microbiology.

[56]  Huimin Zhao,et al.  Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. , 2011, Molecular bioSystems.

[57]  C. Hutchinson,et al.  Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains , 2003, Journal of Industrial Microbiology and Biotechnology.

[58]  Zengyi Shao,et al.  DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways , 2008, Nucleic acids research.

[59]  M. Bibb,et al.  Regulation of secondary metabolism in streptomycetes. , 2005, Current opinion in microbiology.

[60]  Christine J. Martin,et al.  Increasing the efficiency of heterologous promoters in actinomycetes. , 2002, Journal of molecular microbiology and biotechnology.