AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics

Understanding prokaryotic transformation of recalcitrant pollutants and the in-situ metabolic nets require the integration of massive amounts of biological data. Decades of biochemical studies together with novel next-generation sequencing data have exponentially increased information on aerobic aromatic degradation pathways. However, the majority of protein sequences in public databases have not been experimentally characterized and homology-based methods are still the most routinely used approach to assign protein function, allowing the propagation of misannotations. AromaDeg is a web-based resource targeting aerobic degradation of aromatics that comprises recently updated (September 2013) and manually curated databases constructed based on a phylogenomic approach. Grounded in phylogenetic analyses of protein sequences of key catabolic protein families and of proteins of documented function, AromaDeg allows query and data mining of novel genomic, metagenomic or metatranscriptomic data sets. Essentially, each query sequence that match a given protein family of AromaDeg is associated to a specific cluster of a given phylogenetic tree and further function annotation and/or substrate specificity may be inferred from the neighboring cluster members with experimentally validated function. This allows a detailed characterization of individual protein superfamilies as well as high-throughput functional classifications. Thus, AromaDeg addresses the deficiencies of homology-based protein function prediction, combining phylogenetic tree construction and integration of experimental data to obtain more accurate annotations of new biological data related to aerobic aromatic biodegradation pathways. We pursue in future the expansion of AromaDeg to other enzyme families involved in aromatic degradation and its regular update. Database URL: http://aromadeg.siona.helmholtz-hzi.de

[1]  Lynda B. M. Ellis,et al.  The University of Minnesota Biocatalysis/Biodegradation Database: the first decade , 2005, Nucleic Acids Res..

[2]  J. García,et al.  The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida , 2004, Journal of bacteriology.

[3]  P. Lau,et al.  Prokaryotic Homologs of the Eukaryotic 3-Hydroxyanthranilate 3,4-Dioxygenase and 2-Amino-3-Carboxymuconate-6-Semialdehyde Decarboxylase in the 2-Nitrobenzoate Degradation Pathway of Pseudomonas fluorescens Strain KU-7 , 2003, Applied and Environmental Microbiology.

[4]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[5]  J. Bolin,et al.  Evolutionary relationships among extradiol dioxygenases , 1996, Journal of bacteriology.

[6]  Y. Nagata,et al.  Cloning and Sequencing of a Novel meta-Cleavage Dioxygenase Gene Whose Product Is Involved in Degradation of γ-Hexachlorocyclohexane in Sphingomonas paucimobilis , 1999, Journal of bacteriology.

[7]  Ingeborg Holt,et al.  The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[9]  W. Reineke,et al.  Degradation of chlorosubstituted aromatic compounds by Pseudomonas sp. strain B13: fate of 3,5-dichlorocatechol , 1988, Archives of Microbiology.

[10]  Kimmen Sjölander,et al.  Phylogenomic inference of protein molecular function: advances and challenges , 2004, Bioinform..

[11]  James R. Cole,et al.  BSD: the Biodegradative Strain Database , 2003, Nucleic Acids Res..

[12]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[13]  Evgeny M. Zdobnov,et al.  The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell , 2010, Bioinform..

[14]  J. Tamames,et al.  Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation , 2012, The ISME Journal.

[15]  P. Gane,et al.  Microbial Relatives of the Seed Storage Proteins of Higher Plants: Conservation of Structure and Diversification of Function during Evolution of the Cupin Superfamily , 2000, Microbiology and Molecular Biology Reviews.

[16]  Narmada Thanki,et al.  CDD: conserved domains and protein three-dimensional structure , 2012, Nucleic Acids Res..

[17]  T. Sicheritz-Pontén,et al.  A phylogenomic approach to microbial evolution. , 2001, Nucleic acids research.

[18]  J A Eisen,et al.  Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. , 1998, Genome research.

[19]  H. Harms,et al.  Metabolism of Dibenzofuran by Pseudomonas sp. Strain HH69 and the Mixed Culture HH27 , 1990, Applied and environmental microbiology.

[20]  Susumu Goto,et al.  PathPred: an enzyme-catalyzed metabolic pathway prediction server , 2010, Nucleic Acids Res..

[21]  M. A. Prieto,et al.  Biodegradation of Aromatic Compounds byEscherichia coli , 2001, Microbiology and Molecular Biology Reviews.

[22]  Alfonso Valencia,et al.  MetaRouter: bioinformatics for bioremediation , 2004, Nucleic Acids Res..

[23]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[24]  Jürgen Pleiss,et al.  The database of epoxide hydrolases and haloalkane dehalogenases: one structure, many functions , 2004, Bioinform..

[25]  P. Babbitt,et al.  Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. , 2001, Annual review of biochemistry.

[26]  Patrick Forterre,et al.  Phylogenomics of type II DNA topoisomerases , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[27]  H. Hecht,et al.  Assessment of Toluene/Biphenyl Dioxygenase Gene Diversity in Benzene-Polluted Soils: Links between Benzene Biodegradation and Genes Similar to Those Encoding Isopropylbenzene Dioxygenases , 2006, Applied and Environmental Microbiology.

[28]  J. G. Leahy,et al.  Evolution of the soluble diiron monooxygenases. , 2003, FEMS microbiology reviews.

[29]  Winston A Hide,et al.  Big data: The future of biocuration , 2008, Nature.

[30]  D. Pieper,et al.  Metabolic networks, microbial ecology and 'omics' technologies: towards understanding in situ biodegradation processes. , 2010, Environmental microbiology.

[31]  Jordan A. Fish,et al.  FunGene: the functional gene pipeline and repository , 2013, Front. Microbiol..

[32]  Y. Katayama,et al.  Characterization of the 3-O-Methylgallate Dioxygenase Gene and Evidence of Multiple 3-O-Methylgallate Catabolic Pathways in Sphingomonas paucimobilis SYK-6 , 2004, Journal of bacteriology.

[33]  J. Suflita,et al.  Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment , 2007, The ISME Journal.

[34]  Z. Jia,et al.  Structural and biochemical characterization of gentisate 1,2‐dioxygenase from Escherichia coli O157:H7 , 2006, Molecular microbiology.

[35]  E. G. Plotnikova,et al.  Cloning, Expression, and Nucleotide Sequence of thePseudomonas aeruginosa 142 ohb Genes Coding for Oxygenolytic ortho Dehalogenation of Halobenzoates , 1999, Applied and Environmental Microbiology.

[36]  D. Janssen,et al.  Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene , 1997, Journal of bacteriology.

[37]  K. Timmis,et al.  Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6 , 1993, Journal of bacteriology.

[38]  O. Pinyakong,et al.  Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. , 2003, Biochemical and biophysical research communications.

[39]  Alfonso Valencia,et al.  Bionemo: molecular information on biodegradation metabolism , 2008, Nucleic Acids Res..

[40]  P. Babbitt,et al.  Evidence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. , 1999, Biochemistry.

[41]  Howard Junca,et al.  Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. , 2003, Environmental microbiology.

[42]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[43]  C. Nakatsu,et al.  The nucleotide sequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. , 1995, Microbiology.

[44]  Patricia C. Babbitt,et al.  Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies , 2009, PLoS Comput. Biol..

[45]  K. Timmis Handbook of hydrocarbon and lipid microbiology , 2010 .

[46]  R. Geffers,et al.  Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system. , 2013, Environmental microbiology.

[47]  D. Gibson,et al.  Aromatic hydrocarbon dioxygenases in environmental biotechnology. , 2000, Current opinion in biotechnology.

[48]  Robert D. Finn,et al.  The Pfam protein families database , 2004, Nucleic Acids Res..

[49]  Wen-Hsiung Li Unbiased estimation of the rates of synonymous and nonsynonymous substitution , 2006, Journal of Molecular Evolution.

[50]  Sean R. Eddy,et al.  RIO: Analyzing proteomes by automated phylogenomics using resampled inference of orthologs , 2002, BMC Bioinformatics.

[51]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[52]  J. R. van der Meer,et al.  The Broad Substrate Chlorobenzene Dioxygenase and cis-Chlorobenzene Dihydrodiol Dehydrogenase of Pseudomonas sp. Strain P51 Are Linked Evolutionarily to the Enzymes for Benzene and Toluene Degradation (*) , 1996, The Journal of Biological Chemistry.

[53]  D. Pieper,et al.  Aerobic Degradation of Aromatic Hydrocarbons , 2016 .

[54]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[55]  K. Aoki,et al.  Novel Genes Encoding 2-Aminophenol 1,6-Dioxygenase fromPseudomonas Species AP-3 Growing on 2-Aminophenol and Catalytic Properties of the Purified Enzyme* , 1997, The Journal of Biological Chemistry.

[56]  M. Fraaije,et al.  Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. , 2006, Journal of biotechnology.

[57]  M. Fukuda,et al.  Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. , 1999, Structure.

[58]  E. Grund,et al.  Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4 , 1992, Applied and environmental microbiology.

[59]  Jürgen Pleiss,et al.  The Lipase Engineering Database: a navigation and analysis tool for protein families , 2003, Nucleic Acids Res..

[60]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[61]  D. Pieper,et al.  Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. , 1990, The Biochemical journal.

[62]  I. Cho,et al.  Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3 , 2011, Biodegradation.

[63]  Gajendra PS Raghava,et al.  OxDBase: a database of oxygenases involved in biodegradation , 2009, BMC Research Notes.

[64]  D. Roper,et al.  Subcloning and nucleotide sequence of the 3,4‐dihydroxyphenylacetate (homoprotocatechuate) 2,3‐dioxygenase gene from Escherichia coli C , 1990, FEBS letters.

[65]  Eduardo Díaz,et al.  Molecular Characterization of the Gallate Dioxygenase from Pseudomonas putida KT2440 , 2005, Journal of Biological Chemistry.

[66]  G. Lloyd-Jones,et al.  Conserved and hybrid meta-cleavage operons from PAH-degrading Burkholderia RP007. , 1999, Biochemical and biophysical research communications.

[67]  D. Pieper,et al.  94 Phylogenomics of Aerobic Bacterial Degradation of Aromatics , 2022 .

[68]  C. Fraser,et al.  Phylogenomics: Intersection of Evolution and Genomics , 2003, Science.

[69]  S. Harayama,et al.  Biochemical and Molecular Characterization of 1-Hydroxy-2-naphthoate Dioxygenase from Nocardioides sp. KP7* , 1998, The Journal of Biological Chemistry.