Control of metal impurities in "dirty" multicrystalline silicon for solar cells

Abstract The rapid growth of the global photovoltaics (PV) industry is increasingly limited by the availability of suitable Si feedstock material. Therefore, it is very important to explore new approaches that might allow processing of solar cells with satisfactory energy conversion efficiency based on inexpensive feedstock material with less stringent impurity control, i.e., “dirty” silicon. Our detailed studies of the distribution of metal impurity clusters in multicrystalline Si have demonstrated that cells with the same total impurity content can have widely different minority carrier diffusion lengths based on the distribution of the metals, i.e., whether they are dispersed throughout the material or concentrated in a few, large clusters. Possible approaches to defect engineering of metal clusters in silicon are discussed.

[1]  B. Lai,et al.  Impact of metal silicide precipitate dissolution during rapid thermal processing of multicrystalline silicon solar cells , 2005 .

[2]  B. Lai,et al.  Engineering metal-impurity nanodefects for low-cost solar cells , 2005, Nature materials.

[3]  B. Lai,et al.  Analysis of copper-rich precipitates in silicon: chemical state, gettering, and impact on multicrystalline silicon solar cell material , 2005 .

[4]  G. C. Jain,et al.  Solar cells from metallurgical silicon zone melted in polycrystalline silicon tubes , 1982 .

[5]  Y. Kato,et al.  Evaporation of Phosphorus in Molten Silicon by an Electron Beam Irradiation Method , 2004 .

[6]  W. Schröter,et al.  Electrical and structural properties of nanoscale NiSi 2 precipitates in silicon , 2000 .

[7]  A. Istratov,et al.  Iron contamination in silicon technology , 2000 .

[8]  Eicke R. Weber,et al.  Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells , 2005 .

[9]  Y. Kato,et al.  Purification of metallurgical‐grade silicon up to solar grade , 2001 .

[10]  M. Pickett,et al.  Complex intermetallic phase in multicrystalline silicon doped with transition metals , 2006 .

[11]  Y. Kato,et al.  Boron Removal in Molten Silicon by a Steam-Added Plasma Melting Method , 2004 .

[12]  J. Kalejs,et al.  Metal Content of Multicrystalline Silicon for Solar Cells and its Impact on Minority Carrier Diffusion Length , 2003 .

[13]  W. Bergholz,et al.  A fast, preparation‐free method to detect iron in silicon , 1990 .

[14]  B. Bathey,et al.  Solar-grade silicon , 1982 .

[16]  Sergio Pizzini,et al.  Solar grade silicon as a potential candidate material for low-cost terrestrial solar cells , 1982 .

[17]  Y. Delannoy,et al.  Plasma-refining process to provide solar-grade silicon , 2002 .

[18]  A. Istratov,et al.  Recombination activity of copper in silicon , 2001 .

[19]  J. Dismukes,et al.  Improved High‐Purity Arc‐Furnace Silicon for Solar Cells , 1985 .

[20]  S. Pizzini Solar grade silicon versus electronic grade silicon for photovoltaic applications , 1984 .

[21]  C. E. Norman,et al.  Solar-grade silicon substrates by a powder-to-ribbon process , 1985 .

[22]  O. Breitenstein,et al.  Observation of transition metals at shunt locations in multicrystalline silicon solar cells , 2004 .

[23]  W. Schröter,et al.  Electrical and recombination properties of copper-silicide precipitates in silicon , 1998 .

[24]  Y. Delannoy,et al.  Refining of metallurgical-grade silicon by inductive plasma , 2002 .

[25]  Roland Einhaus,et al.  Silicon feedstock for the multi-crystalline photovoltaic industry , 2002 .

[26]  Eicke R. Weber,et al.  Iron and its complexes in silicon , 1999 .

[27]  J.R. Davis,et al.  Impurities in silicon solar cells , 1980, IEEE Transactions on Electron Devices.

[28]  D. Macdonald,et al.  Transition-metal profiles in a multicrystalline silicon ingot , 2005 .