Efficient pricing of Bermudan options using recombining quadratures
暂无分享,去创建一个
[1] Robert M Corless,et al. Compact finite difference method for American option pricing , 2007 .
[2] Muddun Bhuruth,et al. A fast high-order finite difference algorithm for pricing American options , 2008 .
[3] W. Press,et al. Numerical Recipes: The Art of Scientific Computing , 1987 .
[4] S. Ross,et al. Option pricing: A simplified approach☆ , 1979 .
[5] Michael A. Sullivan,et al. Valuing American Put Options Using Gaussian Quadrature , 2000 .
[6] Gianluca Fusai,et al. Implementing Models in Quantitative Finance: Methods and Cases , 2008 .
[7] Z. Bai,et al. A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations , 2007 .
[8] Jin Liang,et al. Optimal convergence rate of the explicit finite difference scheme for American option valuation , 2009 .
[9] Jorge J. Moré,et al. Benchmarking optimization software with performance profiles , 2001, Math. Program..
[10] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[11] Eduardo S. Schwartz,et al. Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis , 1977 .
[12] P. Duck,et al. Universal option valuation using quadrature methods , 2003 .
[13] H. Johnson,et al. The American Put Option Valued Analytically , 1984 .
[14] Herb Johnson,et al. The American Put Option and Its Critical Stock Price , 2000 .
[15] Herb Johnson,et al. A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske‐Johnson Approach , 1992 .
[16] Walter Gautschi,et al. Numerical Analysis , 1978, Mathemagics: A Magical Journey Through Advanced Mathematics.
[17] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[18] Lloyd N. Trefethen,et al. The kink phenomenon in Fejér and Clenshaw–Curtis quadrature , 2007, Numerische Mathematik.