Fast methods for simulation of biomolecule electrostatics

Computer simulation is an important tool for improving our understanding of biomolecule electrostatics, in part to aid in drug design. However, the numerical techniques used in these simulation tools do not exploit fast solver approaches widely used in analyzing integrated circuit interconnects. In this paper we describe one popular formulation used to analyze biomolecule electrostatics, present an integral formulation of the problem, and apply the precorrected-FFT method to accelerate the solution of the integral equations.

[1]  Alexandre Varnek,et al.  A fast and Space-Efficient boundary element method for computing electrostatic and hydration effects in large molecules , 1996, J. Comput. Chem..

[2]  Barry Honig,et al.  Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions† , 2001 .

[3]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[4]  R. Zauhar,et al.  The rigorous computation of the molecular electric potential , 1988 .

[5]  B. Honig,et al.  On the calculation of electrostatic interactions in proteins. , 1985, Journal of molecular biology.

[6]  Bruce Tidor,et al.  Electrostatic Complementarity at Ligand Binding Sites: Application to Chorismate Mutase , 2001 .

[7]  B. Montgomery Pettitt,et al.  A microscopic view of protein solvation , 1992 .

[8]  C. Tanford,et al.  Theory of Protein Titration Curves. I. General Equations for Impenetrable Spheres , 1957 .

[9]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[10]  L. R. Scott,et al.  Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian dynamics program , 1995 .

[11]  Emil Alexov,et al.  Rapid grid‐based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects , 2002, J. Comput. Chem..

[12]  Anna Tempczyk,et al.  Electrostatic contributions to solvation energies: comparison of free energy perturbation and continuum calculations , 1991 .

[13]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[14]  R. Saleh FastCap : A Multipole Accelerated 3-D Capacitance Extraction Program , 1991 .

[15]  S. Sriharan,et al.  The fast multipole boundary element method for molecular electrostatics: An optimal approach for large systems , 1995, J. Comput. Chem..

[16]  J. Kirkwood,et al.  Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions , 1934 .

[17]  Bruce Tidor,et al.  Optimization of binding electrostatics: Charge complementarity in the barnase‐barstar protein complex , 2001, Protein science : a publication of the Protein Society.

[18]  P. Strevens Iii , 1985 .

[19]  B. J. Yoon,et al.  A boundary element method for molecular electrostatics with electrolyte effects , 1990 .

[20]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[21]  B Tidor,et al.  Preferential heterodimer formation via undercompensated electrostatic interactions. , 2001, Journal of the American Chemical Society.

[22]  J. Andrew Grant,et al.  A smooth permittivity function for Poisson–Boltzmann solvation methods , 2001, J. Comput. Chem..

[23]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .

[24]  Steven W. Rick,et al.  The Aqueous Solvation of Water: A Comparison of Continuum Methods with Molecular Dynamics , 1994 .

[25]  T. Picknett,et al.  Journal of Molecular Biology: a publishers perspective. , 1999, Journal of molecular biology.

[26]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[27]  Charles Tanford,et al.  Theory of Protein Titration Curves. II. Calculations for Simple Models at Low Ionic Strength , 1957 .

[28]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[29]  I. Stakgold,et al.  Boundary value problems of mathematical physics , 1987 .

[30]  Barry Honig,et al.  Focusing of electric fields in the active site of Cu‐Zn superoxide dismutase: Effects of ionic strength and amino‐acid modification , 1986, Proteins.

[31]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[32]  Michael Levitt,et al.  Finite‐difference solution of the Poisson–Boltzmann equation: Complete elimination of self‐energy , 1996, J. Comput. Chem..

[33]  Marcia O. Fenley,et al.  Fast adaptive multipole method for computation of electrostatic energy in simulations of polyelectrolyte DNA , 1996, J. Comput. Chem..

[34]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[35]  H. Berendsen,et al.  The electric potential of a macromolecule in a solvent: A fundamental approach , 1991 .

[36]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[37]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[38]  A. Cooper Dynamics of Proteins and Nucleic Acids , 1988 .

[39]  Bruce Tidor,et al.  Electrostatic specificity in molecular ligand design , 2000 .

[40]  Bruce Tidor,et al.  Barstar is electrostatically optimized for tight binding to barnase , 2001, Nature Structural Biology.

[41]  J. Warwicker,et al.  Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. , 1982, Journal of molecular biology.

[42]  Jacob K. White,et al.  A precorrected-FFT method for electrostatic analysis of complicated 3-D structures , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[43]  Jae Young Lee,et al.  Crystal structure and functional analysis of the SurE protein identify a novel phosphatase family , 2001, Nature Structural Biology.

[44]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[45]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[46]  M J Sternberg,et al.  Electrostatic interactions in globular proteins. Different dielectric models applied to the packing of alpha-helices. , 1984, Journal of molecular biology.

[47]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[48]  K. Sharp,et al.  Electrostatic interactions in macromolecules: theory and applications. , 1990, Annual review of biophysics and biophysical chemistry.

[49]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.