Stabilising model predictive control for discrete-time fractional-order systems

In this paper we propose a model predictive control scheme for constrained fractional-order discrete-time systems. We prove that all constraints are satisfied at all time instants and we prescribe conditions for the origin to be an asymptotically stable equilibrium point of the controlled system. We employ a finite-dimensional approximation of the original infinite-dimensional dynamics for which the approximation error can become arbitrarily small. We use the approximate dynamics to design a tube-based model predictive controller which steers the system state to a neighbourhood of the origin of controlled size. We finally derive stability conditions for the MPC-controlled system which are computationally tractable and account for the infinite dimensional nature of the fractional-order system and the state and input constraints. The proposed control methodology guarantees asymptotic stability of the discrete-time fractional order system, satisfaction of the prescribed constraints and recursive feasibility.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  Moritz Diehl,et al.  Robust dynamic programming for min-max model predictive control of constrained uncertain systems , 2004, IEEE Transactions on Automatic Control.

[3]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[4]  Luis M. Pereira,et al.  Fractal Pharmacokinetics , 2010, Comput. Math. Methods Medicine.

[5]  I. Schäfer,et al.  Modelling of coils using fractional derivatives , 2006 .

[6]  F. Bouani,et al.  Robust model predictive control of uncertain fractional systems: a thermal application , 2014 .

[7]  Richard Magin,et al.  Fractional kinetics in multi-compartmental systems , 2010, Journal of Pharmacokinetics and Pharmacodynamics.

[8]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[9]  Xi Li,et al.  Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power , 2010 .

[10]  Manuel Duarte Ortigueira,et al.  Discrete-time differential systems , 2015, Signal Process..

[11]  Miguel Romero,et al.  A survey of Fractional-Order Generalized Predictive Control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[12]  James B. Rawlings,et al.  Postface to “ Model Predictive Control : Theory and Design ” , 2012 .

[13]  Djalil Boudjehem,et al.  The use of fractional order models in predictive control , 2010 .

[14]  Faouzi Bouani,et al.  Model Predictive Control of fractional systems using numerical approximation , 2014, 2014 World Symposium on Computer Applications & Research (WSCAR).

[15]  M. Bettayeb,et al.  Discrete-Time Fractional-Order Systems: Modeling and Stability Issues , 2012 .

[16]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[17]  Roberto Hernández Berlinches,et al.  Generalized Predictive Control of Arbitrary Real Order , 2010 .

[18]  A. Dokoumetzidis,et al.  IVIVC of controlled release formulations: physiological-dynamical reasons for their failure. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[19]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[20]  I. Podlubny Fractional differential equations , 1998 .

[21]  Richard L. Magin,et al.  On the fractional signals and systems , 2011, Signal Process..

[22]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[23]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[24]  G. Duan Analysis and Design of Descriptor Linear Systems , 2010 .

[25]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[26]  Panos Macheras,et al.  The Changing Face of the Rate Concept in Biopharmaceutical Sciences: From Classical to Fractal and Finally to Fractional , 2011, Pharmaceutical Research.

[27]  Miguel Romero,et al.  Fractional-Order Generalized Predictive Control: Formulation and some properties , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[28]  Pantelis Sopasakis,et al.  MPC for Sampled-Data Linear Systems: guaranteeing continuous-time positive invariance , 2014 .

[29]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[30]  B. Achar,et al.  Mittag–Leffler functions and transmission lines , 2002 .

[31]  Kun Li,et al.  Exact solutions of a modified fractional diffusion equation in the finite and semi-infinite domains , 2015 .

[32]  Pantelis Sopasakis,et al.  Robust model predictive control for discrete-time fractional-order systems , 2015, 2015 23rd Mediterranean Conference on Control and Automation (MED).

[33]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[34]  Peter Gritzmann,et al.  Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner Basis , 1993, SIAM J. Discret. Math..

[35]  Vishwesh A. Vyawahare,et al.  Model predictive control for fractional-order system a modeling and approximation based analysis , 2014, 2014 4th International Conference On Simulation And Modeling Methodologies, Technologies And Applications (SIMULTECH).

[36]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[37]  Tadeusz Kaczorek,et al.  Simple Conditions for Practical Stability of Positive Fractional Discrete-Time Linear Systems , 2009, Int. J. Appl. Math. Comput. Sci..

[38]  Pantelis Sopasakis,et al.  Controlled Drug Administration by a Fractional PID , 2014 .

[39]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[40]  M. Bettayeb,et al.  A New Approach for Stability Analysis of Linear Discrete-Time Fractional-Order Systems , 2010 .

[41]  Miguel Romero,et al.  GPC strategies for the lateral control of a networked AGV , 2009, 2009 IEEE International Conference on Mechatronics.

[42]  Miguel Romero,et al.  Fractional-Order Generalized Predictive Control: Application for Low-Speed Control of Gasoline-Propelled Cars , 2013 .

[43]  Abdellah Benzaouia,et al.  Robust stabilization of constrained uncertain continuous-time fractional positive systems , 2015, J. Frankl. Inst..

[44]  Pantelis Sopasakis,et al.  MPC for Sampled-Data Linear Systems: Guaranteeing Constraint Satisfaction in Continuous-Time , 2014, IEEE Transactions on Automatic Control.

[45]  Panos Macheras,et al.  Power law IVIVC: an application of fractional kinetics for drug release and absorption. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.