On the complexity of enumerating possible dynamics of sparsely connected Boolean network automata with simple update rules

We study how hard is to determine some fundamental properties of dynamics of certain types of network automata. We address the computational complexity of determining how many different possible dynamic evolutions can arise from some structurally very simple, deterministic and sparsely connected network automata. In this as well as our prior, related work, we try to push the limits on the underlying simplicity of two structural aspects of such network automata: (i) the uniform sparseness of their topologies, and (ii) severely restricted local behaviors of the individual agents (that is, the local update rules of the network nodes). In this endeavor, we prove that counting the Fixed Point (FP) configurations and the predecessor and ancestor configurations in two classes of network automata, called Sequential and Synchronous Dynamical Systems (SDSs and SyDSs, respectively), are computationally intractable problems. Moreover, this intractability is shown to hold when each node in such a network is required to update according to (i) a monotone Boolean function, (ii) a symmetric Boolean function, or even (iii) a simple threshold function that is both monotone and symmetric. Furthermore, the hardness of the exact enumeration of FPs and other types of configurations of interest remains to hold even in some severely restricted cases with respect to both the network topology and the diversity (or lack thereof) of individual node's local update rules. Namely, we show that the counting problems of interest remain hard even when the nodes of an SDS or SyDS use at most two different update rules from a given restricted class, and, additionally, when the network topologies are constrained so that each node has only $c = O(1)$ neighbors for small values of constant $c$. Our results also have considerable implications for other discrete dynamical system models studied in applied mathematics, physics, biology and computer science, such as Hopfield networks and spin glasses. In particular, one corollary of our results is that determining the memory capacity of sparse discrete Hopfield networks (viewed as associative memories) remains computationally intractable even when the interconnection and dependence structure among the nodes of a Hopfield network is severely restricted.

[1]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[2]  D. Richardson,et al.  Tessellations with Local Transformations , 1972, J. Comput. Syst. Sci..

[3]  Pekka Orponen,et al.  Attraction Radii in Binary Hopfield Nets are Hard to Compute , 1993, Neural Computation.

[4]  Harry B. Hunt,et al.  Predecessor and Permutation Existence Problems for Sequential Dynamical Systems , 2003, DMCS.

[5]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[6]  Christian M. Reidys,et al.  Discrete, sequential dynamical systems , 2001, Discret. Math..

[7]  Predrag T. Tosic Counting Fixed Points and Gardens of Eden of Sequential Dynamical Systems on Planar Bipartite Graphs , 2005, Electron. Colloquium Comput. Complex..

[8]  Sorin Istrail,et al.  Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces (extended abstract) , 2000, STOC '00.

[9]  Predrag T. Tosic On Complexity of Counting Fixed Points in Certain Classes of Graph Automata , 2005, Electron. Colloquium Comput. Complex..

[10]  Howard Gutowitz Cellular automata: theory and experiment : proceedings of a workshop , 1990 .

[11]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[12]  Bruno Durand Inversion of 2D Cellular Automata: Some Complexity Results , 1994, Theor. Comput. Sci..

[13]  Klaus Sutner,et al.  De Bruijn Graphs and Linear Cellular Automata , 1991, Complex Syst..

[14]  Gustavo Deco,et al.  Finit Automata-Models for the Investigation of Dynamical Systems , 1997, Inf. Process. Lett..

[15]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[16]  M. Jerrum Two-dimensional monomer-dimer systems are computationally intractable , 1987 .

[17]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[18]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[19]  Richard M. Karp,et al.  Monte-Carlo algorithms for enumeration and reliability problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[20]  Predrag T. Tosic Computational Complexity of Some Enumeration Problems About Uniformly Sparse Boolean Network Automata , 2006, Electron. Colloquium Comput. Complex..

[21]  Harry B. Hunt,et al.  The Complexity of Planar Counting Problems , 1998, SIAM J. Comput..

[22]  Frederic Green,et al.  NP-Complete Problems in Cellular Automata , 1987, Complex Syst..

[23]  Predrag T. Tosic On counting fixed point configurations in star networks , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[24]  Christian M. Reidys,et al.  Elements of a theory of simulation II: sequential dynamical systems , 2000, Appl. Math. Comput..

[25]  Gul A. Agha,et al.  Computational Complexity of Predicting Some Properties of Large-Scale Agent Ensembles' Dynamical Evolution , 2005, EUMAS.

[26]  Karel Culik,et al.  On Invertible Cellular Automata , 1987, Complex Syst..

[27]  Harry B. Hunt,et al.  Gardens of Eden and Fixed Points in Sequential Dynamical Systems , 2001, DM-CCG.

[28]  C. Barrett,et al.  DICHOTOMY RESULTS FOR SEQUENTIAL DYNAMICAL SYSTEMS , 2000 .

[29]  P. T. To,et al.  On Complexity of Counting Fixed Point Configurations in Certain Classes of Graph Automata , 2005 .

[30]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[31]  Bruno Martin,et al.  A Geometrical Hierarchy on Graphs via Cellular Automata , 2002, Fundam. Informaticae.

[32]  Gul A. Agha,et al.  PARALLEL vs . SEQUENTIAL THRESHOLD CELLULAR AUTOMATA : Comparison and Contrast , 2005 .

[33]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[34]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[35]  Gul A. Agha,et al.  Characterizing Configuration Spaces of Simple Threshold Cellular Automata , 2004, ACRI.

[36]  Melanie Mitchell,et al.  Computation in Cellular Automata: A Selected Review , 2005, Non-standard Computation.

[37]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[38]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Gul A. Agha,et al.  On Computational Complexity of Counting Fixed Points in Symmetric Boolean Graph Automata , 2005, UC.

[40]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[41]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[42]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[43]  Harry B. Hunt,et al.  Reachability problems for sequential dynamical systems with threshold functions , 2003, Theor. Comput. Sci..

[44]  Christian M. Reidys,et al.  Elements of a theory of computer simulation I: Sequential CA over random graphs , 1999, Appl. Math. Comput..

[45]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[46]  U. S. Army Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 2007 .

[47]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[48]  Eric Goles,et al.  Cellular automata, dynamical systems, and neural networks , 1994 .

[49]  Catherine S. Greenhill The complexity of counting colourings and independent sets in sparse graphs and hypergraphs , 2000, computational complexity.

[50]  L Glass,et al.  Counting and classifying attractors in high dimensional dynamical systems. , 1996, Journal of theoretical biology.

[51]  Christian M. Reidys,et al.  Sequential dynamical systems and applications to simulations , 2000, Proceedings 33rd Annual Simulation Symposium (SS 2000).

[52]  Zsuzsanna Róka One-way Cellular Automata on Cayley Graphs , 1993, FCT.

[53]  E. Goles,et al.  Neural and Automata Networks: Dynamical Behavior and Applications , 2011 .

[54]  Richard M. Karp,et al.  Monte-Carlo algorithms for the planar multiterminal network reliability problem , 1985, J. Complex..

[55]  Eric Rémila,et al.  Simulations of graph automata , 1998 .

[56]  J. Myhill The converse of Moore’s Garden-of-Eden theorem , 1963 .

[57]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[58]  Pekka Orponen,et al.  On the Computational Complexity of Analyzing Hopfield Nets , 1989, Complex Syst..

[59]  Reinhard Laubenbacher,et al.  Equivalence Relations on Finite Dynamical Systems , 2001, Adv. Appl. Math..

[60]  Klaus Sutner,et al.  On the Computational Complexity of Finite Cellular Automata , 1995, J. Comput. Syst. Sci..

[61]  S. Kauffman Emergent properties in random complex automata , 1984 .

[62]  Gul A. Agha,et al.  Concurrency vs. sequential interleavings in 1-D threshold cellular automata , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[63]  Eric Goles,et al.  Cellular automata and complex systems , 1999 .

[64]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[65]  Bruno Durand A Random NP-Complete Problem for Inversion of 2D Cellular Automata , 1995, STACS.

[66]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[67]  Bruno Durand Global Properties of 2D Cellular Automata: Some Complexity Results , 1993, MFCS.

[68]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[69]  Charles R. Dyer,et al.  One-Way Bounded Cellular Automata , 1980, Inf. Control..

[70]  Pekka Orponen,et al.  Complexity Issues in Discrete Hopfield Networks , 1994 .

[71]  Max H. Garzon,et al.  Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .

[72]  S. Wolfram Twenty Problems in the Theory of Cellular Automata , 1985 .