Alternating Timed Automata over Bounded Time

Alternating timed automata are a powerful extension of classical Alur-Dill timed automata that are closed under all Boolean operations. They have played a key role, among others, in providing verification algorithms for prominent specification formalisms such as Metric Temporal Logic. Unfortunately, when interpreted over an infinite dense time domain (such as the reals), alternating time dautomata have an undecidable language emptiness problem. The main result of this paper is that, over bounded time domains, language emptiness for alternating timed automata is decidable (but nonelementary). The proof involves showing decidability of a class of parametric McNaughton games that are played over timed words and that have winning conditions expressed in the monadic logic of order augmented with the distance-one relation. As a corollary, we establish the decidability of the time-bounded model-checking problem for Alur-Dill timed automata against specifications expressed as alternating timed automata.

[1]  Kim G. Larsen,et al.  UPPAAL-Tiga: Time for Playing Games! , 2007, CAV.

[2]  Alexander Moshe Rabinovich,et al.  Finite variability interpretation of monadic logic of order , 2002, Theor. Comput. Sci..

[3]  Joël Ouaknine,et al.  Time-Bounded Verification , 2009, CONCUR.

[4]  Alexander Moshe Rabinovich,et al.  The Church Synthesis Problem with Parameters , 2007, Log. Methods Comput. Sci..

[5]  Alexander Moshe Rabinovich,et al.  Church Synthesis Problem with Parameters , 2006, CSL.

[6]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[7]  J. R. Büchi,et al.  Solving sequential conditions by finite-state strategies , 1969 .

[8]  Christel Baier,et al.  Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes , 2005, Theor. Comput. Sci..

[9]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[10]  Kim G. Larsen,et al.  Optimal Strategies in Priced Timed Game Automata , 2004, FSTTCS.

[11]  R. McNaughton Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.

[12]  Rajeev Alur,et al.  Optimal Reachability for Weighted Timed Games , 2004, ICALP.

[13]  Pierre-Yves Schobbens,et al.  The Regular Real-Time Languages , 1998, ICALP.

[14]  Peter Lammich,et al.  Tree Automata , 2009, Arch. Formal Proofs.

[15]  Thomas Wilke,et al.  Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata , 1994, FTRTFT.

[16]  Orna Kupferman,et al.  Weak alternating automata are not that weak , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[17]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[18]  Moshe Y. Vardi Alternating Automata and Program Verification , 1995, Computer Science Today.

[19]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[20]  Wolfgang Thomas,et al.  Church's Problem and a Tour through Automata Theory , 2008, Pillars of Computer Science.

[21]  Joël Ouaknine,et al.  On the decidability of metric temporal logic , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[22]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[23]  Joël Ouaknine,et al.  The Cost of Punctuality , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[24]  Philippe Herrmann,et al.  Timed Automata and Recognizability , 1998, Inf. Process. Lett..

[25]  Christof Löding,et al.  Alternating Automata and Logics over Infinite Words , 2000, IFIP TCS.

[26]  Joël Ouaknine,et al.  Safety Metric Temporal Logic Is Fully Decidable , 2006, TACAS.

[27]  E. Emerson,et al.  Tree Automata, Mu-Calculus and Determinacy (Extended Abstract) , 1991, FOCS 1991.

[28]  Vlad Rusu,et al.  Verifying Time-bounded Properties for ELECTRE Reactive Programs with Stopwatch Automata , 1994, Hybrid Systems.

[29]  Thomas Wilke,et al.  Timed Alternating Tree Automata: The Automata-Theoretic Solution to the TCTL Model Checking Problem , 1999, ICALP.

[30]  Joost-Pieter Katoen,et al.  Safe On-The-Fly Steady-State Detection for Time-Bounded Reachability , 2005, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[31]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[32]  Slawomir Lasota,et al.  Alternating timed automata , 2005, TOCL.

[33]  Joël Ouaknine,et al.  On the decidability and complexity of Metric Temporal Logic over finite words , 2007, Log. Methods Comput. Sci..

[34]  Thomas A. Henzinger,et al.  Event-Clock Automata: A Determinizable Class of Timed Automata , 1999, Theor. Comput. Sci..

[35]  Thomas A. Henzinger,et al.  Minimum-Time Reachability in Timed Games , 2007, ICALP.

[36]  Joseph Sifakis,et al.  On the Synthesis of Discrete Controllers for Timed Systems (An Extended Abstract) , 1995, STACS.

[37]  Wolfgang Thomas,et al.  Parametrized Regular Infinite Games and Higher-Order Pushdown Strategies , 2009, FCT.

[38]  Howard Wong-Toi,et al.  The input-output control of real-time discrete event systems , 1992, [1992] Proceedings Real-Time Systems Symposium.