Multifidelity Uncertainty Quantification Using Spectral Stochastic Discrepancy Models.
暂无分享,去创建一个
[1] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[2] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[3] Michael S. Eldred,et al. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .
[4] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[5] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[6] P. A. Newman,et al. Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models , 2001 .
[7] Derek Bingham,et al. Prediction and Computer Model Calibration Using Outputs From Multifidelity Simulators , 2012, Technometrics.
[8] R. Askey,et al. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .
[9] Rüdiger Rackwitz,et al. Two basic problems in reliability-based structural optimization , 1997, Math. Methods Oper. Res..
[10] Barbara I. Wohlmuth,et al. Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB , 2005, TOMS.
[11] Khachik Sargsyan,et al. Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..
[12] Stephen Roberts,et al. Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification , 2012 .
[13] Dongbin Xiu,et al. Computational Aspects of Stochastic Collocation with Multifidelity Models , 2014, SIAM/ASA J. Uncertain. Quantification.
[14] Anthony T. Patera,et al. A Two-Step Certified Reduced Basis Method , 2012, J. Sci. Comput..
[15] Karen Willcox,et al. Convergent Multifidelity Optimization using Bayesian Model Calibration , 2010 .
[16] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[17] A. O'Hagan,et al. Predicting the output from a complex computer code when fast approximations are available , 2000 .
[18] Nitin Agarwal,et al. A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties , 2009, J. Comput. Phys..
[19] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[20] Timothy Michael Wildey,et al. Propagation of Model Form Uncertainty for Thermal Hydraulics using RANS Turbulence Models in Drekar , 2012 .
[21] Ilan Kroo,et al. A Multifidelity Gradient-Free Optimization Method and Application to Aerodynamic Design , 2008 .
[22] Leo Wai-Tsun Ng,et al. Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation , 2012 .
[23] Dongbin Xiu,et al. A Stochastic Collocation Algorithm with Multifidelity Models , 2014, SIAM J. Sci. Comput..
[24] M. Eldred,et al. Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions , 2008 .
[25] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[26] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[27] Shawn E. Gano,et al. Hybrid Variable Fidelity Optimization by Using a Kriging-Based Scaling Function , 2005 .
[28] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[29] R. A. Miller,et al. Sequential kriging optimization using multiple-fidelity evaluations , 2006 .
[30] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[31] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[32] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[33] Michael S. Eldred,et al. Sparse Pseudospectral Approximation Method , 2011, 1109.2936.
[34] Jonathan C. Murray,et al. The development of CACTUS : a wind and marine turbine performance simulation code. , 2011 .
[35] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[36] Jeroen A. S. Witteveen,et al. Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos , 2006 .
[37] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[38] A. Kiureghian,et al. STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .
[39] Sai Hung Cheung,et al. Bayesian uncertainty analysis with applications to turbulence modeling , 2011, Reliab. Eng. Syst. Saf..
[40] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[41] Michael S. Eldred,et al. Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .