Weakly admissible vector equilibrium problems

We establish lower semi-continuity and strict convexity of the energy functionals for a large class of vector equilibrium problems in logarithmic potential theory. This, in particular, implies the existence and uniqueness of a minimizer for such vector equilibrium problems. Our work extends earlier results in that we allow unbounded supports without having strongly confining external fields. To deal with the possible noncompactness of supports, we map the vector equilibrium problem onto the Riemann sphere and our results follow from a study of vector equilibrium problems on compacts in higher dimensions. Our results cover a number of cases that were recently considered in random matrix theory and for which the existence of a minimizer was not clearly established yet.

[1]  Андрей Александрович Гончар,et al.  Об аппроксимациях Эрмита - Паде для систем функций марковского типа@@@Hermite - Pade approximants for systems of Markov-type functions , 1997 .

[2]  Arno B.J. Kuijlaars,et al.  Multiple orthogonal polynomials in random matrix theory , 2010, 1004.0846.

[3]  N. Levenberg,et al.  Two problems on potential theory for unbounded sets , 1998 .

[4]  E. Rakhmanov,et al.  Hermite-Pade approximants for systems of Markov-type functions , 1997 .

[5]  T. Broadbent Complex Variables , 1970, Nature.

[6]  Steven Delvaux,et al.  Non-intersecting squared Bessel paths with one positive starting and ending point , 2011 .

[7]  Michael Stolz,et al.  Large deviations for disordered bosons and multiple orthogonal polynomial ensembles , 2011 .

[8]  Thomas Bloom,et al.  ALMOST SURE CONVERGENCE FOR ANGELESCO ENSEMBLES , 2011 .

[9]  Maurice Duits,et al.  Universality in the two‐matrix model: a Riemann‐Hilbert steepest‐descent analysis , 2008, 0807.4814.

[10]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[11]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[12]  Steven Delvaux,et al.  Random matrix model with external source and a constrained vector equilibrium problem , 2010, 1001.1238.

[13]  Steven Delvaux,et al.  Equilibrium problem for the eigenvalues of banded block Toeplitz matrices , 2011, 1101.2644.

[14]  Maurice Duits,et al.  The Hermitian two matrix model with an even quartic potential , 2010, 1010.4282.

[15]  Marco Bertola,et al.  Regularity of a vector potential problem and its spectral curve , 2008, J. Approx. Theory.

[16]  Maurice Duits,et al.  A vector equilibrium problem for the two-matrix model in the quartic/quadratic case , 2011 .

[17]  Arno B. J. Kuijlaars,et al.  An Equilibrium Problem for the Limiting Eigenvalue Distribution of Banded Toeplitz Matrices , 2007, SIAM J. Matrix Anal. Appl..

[18]  Steven Delvaux,et al.  An Equilibrium Problem for the Limiting Eigenvalue Distribution of Rational Toeplitz Matrices , 2010, SIAM J. Matrix Anal. Appl..

[19]  Arno B. J. Kuijlaars,et al.  Hermite-Padé approximations and multiple orthogonal polynomial ensembles , 2011 .

[20]  Ana C. Matos,et al.  Equilibrium Problems for Vector Potentials with Semidefinite Interaction Matrices and Constrained Masses , 2011, 1105.3088.

[21]  A. Kuijlaars,et al.  Non-Intersecting Squared Bessel Paths and Multiple Orthogonal Polynomials for Modified Bessel Weights , 2007, 0712.1333.

[22]  V. N. Sorokin,et al.  Rational Approximations and Orthogonality , 1991 .

[23]  E. Rakhmanov,et al.  On the equilibrium problem for vector potentials , 1985 .