Real-time implementation of neural optimal control and state estimation for a linear induction motor

A reduced order state estimator based on recurrent high-order neural networks (RHONN) trained using an extended Kalman filter (EKF) is designed for the magnetic fluxes of a linear induction motor (LIM). The proposed state estimator does not need the mathematical model of the plant. This state estimator is employed to obtain the unmeasurable state variables of the LIM in order to use a state feedback nonlinear controller. A neural inverse optimal control is implemented to achieve trajectory tracking for a position reference. Real-time implementation results on a LIM prototype illustrate the applicability of the proposed scheme. HighlightsReal-time implementation.Stability proof on the basis of Lyapunov theory.Real-life application.Experimental results.Application to a wide class of discrete-time nonlinear systems.

[1]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[2]  Xu Yang,et al.  Robust PLS approach for KPI-related prediction and diagnosis against outliers and missing data , 2014, Int. J. Syst. Sci..

[3]  Jorge Rivera,et al.  DISCRETE-TIME SLIDING MODE CONTROL OF AN INDUCTION MOTOR , 2002 .

[4]  Theodore Wildi,et al.  Electrical Machines, Drives, and Power Systems , 1990 .

[5]  Anders Hansson,et al.  Speed Tracking of a Linear Induction Motor-Enumerative Nonlinear Model Predictive Control , 2012, IEEE Transactions on Control Systems Technology.

[6]  Faa-Jeng Lin,et al.  Adaptive backstepping sliding mode control for linear induction motor drive , 2002 .

[7]  Alexander G. Loukianov,et al.  Discrete-Time High Order Neural Control - Trained with Kaiman Filtering , 2010, Studies in Computational Intelligence.

[8]  Manolis A. Christodoulou,et al.  Adaptive Control with Recurrent High-order Neural Networks , 2000, Advances in Industrial Control.

[9]  Damian Giaouris,et al.  Sensorless Control of Induction Motor Drives at Very Low and Zero Speeds Using Neural Network Flux Observers , 2009, IEEE Transactions on Industrial Electronics.

[10]  Ji-Yoon Yoo,et al.  Speed-sensorless vector control of an induction motor using neural network speed estimation , 2001, IEEE Trans. Ind. Electron..

[11]  Alexander G. Loukianov,et al.  Robust Block Decomposition Sliding Mode Control Design , 2002 .

[12]  Faa-Jeng Lin,et al.  FPGA-based fuzzy sliding-mode control for a linear induction motor drive , 2005 .

[13]  C. Byrnes,et al.  Design of discrete-time nonlinear control systems via smooth feedback , 1994, IEEE Trans. Autom. Control..

[14]  Hamid A. Toliyat,et al.  Handbook of Electric Motors , 2004 .

[15]  A. Tornambè,et al.  High-gain observers in the state and estimation of robots having elastic joints , 1989 .

[16]  E. Matkevičius,et al.  The Generalized Model of the Linear Induction Motor , 2006 .

[17]  Haroutuon A. Hairik,et al.  Dynamic Model of Linear Induction Motor Considering the End Effects , 2009 .

[18]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[19]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[20]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[21]  Alexander G. Loukianov,et al.  Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[22]  R. Bellman Dynamic programming. , 1957, Science.

[23]  Edgar N. Sánchez,et al.  Designing an Associative Memory via Optimal Training for Fault Diagnosis , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[24]  Alexander G. Loukianov,et al.  High-Order Sliding Mode Block Control of Single-Phase Induction Motor , 2014, IEEE Transactions on Control Systems Technology.

[25]  Daniel W. C. Ho,et al.  State estimation for delayed neural networks , 2005, IEEE Transactions on Neural Networks.

[26]  Alma Y. Alanis,et al.  Inverse optimal neural control for a class of discrete‐time nonlinear positive systems , 2012 .

[27]  Ganesh K. Venayagamoorthy,et al.  Smart grid and electric transportation , 2009 .

[28]  Guanrong Chen,et al.  Discrete-Time Output Trajectory Tracking by Recurrent High-Order Neural Network Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[29]  Alexander G. Loukianov,et al.  Real-Time Recurrent Neural State Estimation , 2011, IEEE Transactions on Neural Networks.

[30]  Edgar N. Sánchez,et al.  Discrete-time reduced order neural observer for Linear Induction Motors , 2011, 2011 IEEE Symposium on Computational Intelligence Applications In Smart Grid (CIASG).

[31]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[32]  Walmir M. Caminhas,et al.  Online neo-fuzzy-neuron state observer , 2000, Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks.

[33]  L. Fridman,et al.  Discrete time supper-twisting observer for 2n dimensional systems , 2011, 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control.

[34]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[35]  B. Karanayil,et al.  Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks , 2005 .

[36]  Edgar N. Sanchez,et al.  Discrete-Time Inverse Optimal Control for Nonlinear Systems , 2013 .

[37]  Rong-Jong Wai,et al.  Robust control using neural network uncertainty observer for linear induction motor servo drive , 2002 .

[38]  Bing Chen,et al.  Adaptive neural tracking control for a class of stochastic nonlinear systems , 2014 .

[39]  Rong-Jong Wai,et al.  Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer , 2000, IEEE Trans. Ind. Electron..

[40]  R.V. Patel,et al.  A stable neural network observer with application to flexible-joint manipulators , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[41]  Darren M. Dawson,et al.  Sensorless rotor velocity tracking control for induction motors , 2001, IEEE Trans. Control. Syst. Technol..

[42]  K. Nam,et al.  Field-oriented control scheme for linear induction motor with the end effect , 2005 .