Two-Dimensional Aerodynamic Optimization Using the Discrete Adjoint Method with or without Parameterization

An optimization method based on the use of the derivatives of functional outputs with respect to (w.r.t.) solid body mesh nodes is presented. These derivatives are obtained by a discrete adjoint method that first computes the derivatives of functional outputs w.r.t. all volume mesh nodes. They are smoothed before being used in a numerical optimization algorithm. The procedure is demonstrated for a 2D flow governed by the compressible Reynolds-Averaged Navier-Stokes equations (RANS) completed by the Spalart-Allmaras turbulence model. Discrete derivatives are computed with or without making the frozen eddy-viscosity assumption. The design algorithm is compared with a more classical one using design variables related to B-splines on the four test cases introduced by Kim et al. 1

[1]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[2]  R. M. Hicks,et al.  An assessment of airfoil design by numerical optimization , 1974 .

[3]  Richard P. Dwight,et al.  Adjoint Algorithms for the Optimization of 3d Turbulent Configurations , 2007 .

[4]  A. Jameson Optimum aerodynamic design via boundary control , 1994 .

[5]  G. R. Shubin,et al.  A comparison of optimization-based approaches for a model computational aerodynamics design problem , 1992 .

[6]  Alexios P. Giotis,et al.  Acceleration of genetic algorithms using artificial neural networks: Application of the method , 2000 .

[7]  M. Meaux,et al.  VISCOUS AERODYNAMIC SHAPE OPTIMIZATION BASED ON THE DISCRETE ADJOINT STATE FOR 3D INDUSTRIAL CONFIGURATIONS , 2004 .

[8]  Richard P. Dwight,et al.  Discrete Adjoint of the Navier-Stokes Equations for Aerodynamic Shape Optimization , 2005 .

[9]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  G. Zoutendijk,et al.  Methods of Feasible Directions , 1962, The Mathematical Gazette.

[12]  P. Sagaut,et al.  A Kriging Approach for CFD/Wind-Tunnel Data Comparison , 2006 .

[13]  Juan J. Alonso,et al.  Two-dimensional High-Lift Aerodynamic Optimization Using the Continuous Adjoint Method , 2000 .

[14]  Richard P. Dwight,et al.  Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation , 2008, J. Comput. Phys..

[15]  Hiroshi Akima,et al.  A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures , 1970, JACM.

[16]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[17]  O. Baysal,et al.  Aerodynamic Sensitivity Analysis Methods for the Compressible Euler Equations , 1991 .

[18]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[19]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[20]  L Bonhaus Daryl,et al.  Aerodynamic Design on Unstructured Grids for Turbulent , 1997 .

[21]  V. Korivi,et al.  Sensitivity analysis applied to the Euler equations - A feasibility study with emphasis on variation of geometric shape , 1991 .

[22]  Antony Jameson,et al.  Computational Fluid Dynamics for Aerodynamic Design: Its Current and Future Impact , 2001 .

[23]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  Michael B. Giles,et al.  Adjoint and defect error bounding and correction for functional estimates , 2003 .

[26]  D. Schwamborn,et al.  The DLR-F5 Wing Test Case, Contribution to "EUROVAL - An European Initiative on Validation of CFD Codes" , 1993 .

[27]  W. K. Anderson,et al.  Airfoil Design on Unstructured Grids for Turbulent Flows , 1999 .

[28]  Kyriakos C. Giannakoglou,et al.  Acceleration of genetic algorithms using artificial neural networks: Theoretical background , 2000 .

[29]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[30]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[31]  John C. Vassberg,et al.  In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions , 2009 .

[32]  Wu Li,et al.  Spline-Based Airfoil Curvature Smoothing and Its Applications , 2005 .

[33]  M. Giles,et al.  Adjoint Code Developments Using the Exact Discrete Approach , 2001 .

[34]  D. Venditti,et al.  Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .

[35]  I. H. Abbott,et al.  Theory of Wing Sections , 1959 .

[36]  R. Dwight Goal‐oriented mesh adaptation for finite volume methods using a dissipation‐based error indicator , 2007 .

[37]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[38]  Laurent Cambier,et al.  Status of the elsA CFD Software for Flow Simulation and Multidisciplinary Applications , 2008 .

[39]  R. Dwight,et al.  Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches , 2010 .

[40]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[41]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[42]  P. Dierckx An algorithm for surface-fitting with spline functions , 1981 .

[43]  O. Rho,et al.  Effects of Constant Turbulent Eddy Viscosity Assumption on Gradient- Based Design Optimization , 2002 .

[44]  R. M. Hicks,et al.  Numerical Airfoil Optimization Using a Reduced Number of Design Coordinates , 1976 .

[45]  Marian Nemec,et al.  Towards efficient aerodynamic shape optimization based on the Navier-Stokes equations , 2001 .

[46]  J. Eric,et al.  Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations , 1998 .

[47]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[48]  J. Peter,et al.  Sensitivity Analysis for the RANS Equations Coupled with Linearized Turbulence Model , 2007 .

[49]  Garret N. Vanderplaats,et al.  CONMIN: A FORTRAN program for constrained function minimization: User's manual , 1973 .

[50]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.